精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,AB=AC=5,BC=6,D、E分别是AB、AC的中点,F、G为BC上的两点,FG=3,线段DG,EF的交点为O,当线段FG在线段BC上移动时,三角形FGO的面积与四边ADOE的面积之和恒为定值,则这个定值是(  )
A、15B、12C、9D、6
分析:连接DE,过A作AH⊥BC于H.由于DE是AB、AC的中点,利用三角形中位线定理可得DE∥BC,并且可知△ADE的高等于
1
2
AH,再结合等腰三角形三线合一性质,以及勾股定理可求AH,那么△ADE的面积就可求.而所求S△FOG+S四边形ADOE=S△ADE+S△DOE+S△FOG,又因为△DOE和△FOG的底相等,高之和等于AH的一半,故它们的面积和可求,从而可以得到S△FOG+S四边形ADOE的面积.
解答:精英家教网解:如图:连接DE,过A向BC作垂线,H为垂足,
∵△ABC中,D、E分别是AB、AC的中点,
∴DE,AH分别是△ABC的中位线和高,BH=CH=
1
2
BC=
1
2
×6=3,
∵AB=AC=5,BC=6,由勾股定理得AH=
AB2-BH2
=
52-32
=4,
∴S△ADE=
1
2
BC•
AH
2
=
1
2
×3×
4
2
=3,
设△DOE的高为a,△FOG的高为b,则a+b=
AH
2
=2,
∴S△DOE+S△FOG=
1
2
DE•a+
1
2
FG•b=
1
2
×3(a+b)=
1
2
×3×2=3,
∴三角形FGO的面积与四边ADOE的面积之和恒为定值,则这个定值是
S△ADE+S△DOE+S△FOG=3+3=6.
故选D.
点评:本题属中等难度题目,涉及到三角形中位线定理,解答此类题目时一般只要知道中点要作中位线,已知等腰三角形要作高线,利用勾股定理解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案