精英家教网 > 初中数学 > 题目详情
(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙
O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,
B两点的坐标分别为A(0,2),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.
(1)连结DE,∵CD是⊙O1的直径,

∴DE⊥BC,
∴四边形ADEO为矩形.
∴OE=AD=2,DE=AO=2.
在等腰梯形ABCD中,DC=AB.
∴CE=BO=2,CO=4.
∴C(4,0),D(2,2).
(2)连结O1E,在⊙O1中,O1E=O1C,
∠O1EC=∠O1CE,
在等腰梯形ABCD中,∠ABC=∠DCB.
∴O1E∥AB,
又∵EF⊥AB,
∴O1E⊥EF.
∵E在AB上,
∴EF为⊙O1的切线
(3)解法一:存在满足条件的点P.
如右图,过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,

在矩形OMPN中,ON=PM,
设ON=x,则PM=PC=x,CN=4-x,
tan∠ABO=.
∴∠ABO=60°,
∴∠PCN =∠ABO =60°.
在Rt△PCN中,
cos∠PCN =
,
∴x=.
∴PN=CN·tan∠PCN=(4-=.
∴满足条件的P点的坐标为().
解法二:存在满足条件的点P,
如右图,在Rt△AOB中,AB=.
过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,
在矩形OMPN中,ON=PM,
设ON=x,则PM=PC=x,CN=4-x,
∵∠PCN=∠ABO,∠PCN=∠AOB=90°.
∴△PNC∽△AOB,
,即.
解得x=.
又由△PNC∽△AOB,得

∴PN=.
∴满足条件的P点的坐标为().
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(11·柳州)如图,⊙O的半径为5,直径ABCD,以B为圆心,BC长为半径作,则围成的新月形ACED(阴影部分)的面积为_     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为 上
点,BC=AF,延长DF与BA的延长线交于E.
(1)求证△ABD为等腰三角形.
(2)求证AC•AF=DF•FE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AB与弦CD(不是直径)相交于点E,且CE=DE,过点B作CD得平行线AD延长线于点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为4,sin∠BCD=,求CD的长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点BAO的延长线交⊙O于点C.若∠A=40º,则∠C=_____

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,的弦与直线径相交,若,则=_____°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分8分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.
(1)求证:PB为⊙O的切线;
(2)若tan∠ABE=,求sinE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是           (    )
A.20 cm2    8.20兀cm2    C.10兀cm2    D.5兀cm2

查看答案和解析>>

同步练习册答案