分析 根据相似三角形对应角相等可得∠A=∠BPD,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A+∠APC=∠PCD=45°,然后根据∠APB=∠APC+∠PCD+∠BPD计算即可得解.
解答 解:∵△PDB∽△ACP,
∴∠A=∠BPD,
∵CD是等腰直角△PCD的底边,
∴∠PCD=45°,∠CPD=90°,
由三角形的外角的性质得∠A+∠APC=∠PCD=45°,
∴∠APB=∠APC+∠PCD+∠BPD=∠APC+∠PCD+∠A=45°+90°=135°.
故答案为:135.
点评 本题考查了相似三角形对应角相等的性质,等腰直角三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m>0 | B. | m<0 | C. | m>$\frac{1}{3}$ | D. | m<$\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com