精英家教网 > 初中数学 > 题目详情
如图是二次函数图像的一部分,其对称轴是,且过点(-3,0),下列说法:①<0 ④若(-5,y1),(1,y2)是抛物线上两点,则,其中说法正确的是(   )
A.①②B.②③C.①②④D.①②③④
C.

试题分析:∵二次函数的图象的开口向上,
∴a>0,
∵二次函数的图象y轴的交点在y轴的负半轴上,
∴c<0,
∵二次函数图象的对称轴是直线x=﹣1,
∴﹣=﹣1,
∴b=2a>0,
∴abc<0,∴①正确;
2a﹣b=2a﹣2a=0,∴②正确;
∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).
∴与x轴的另一个交点的坐标是(1,0),
∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;
∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
根据当x>﹣1时,y随x的增大而增大,
∵1<3,
∴y2<y1,∴④正确.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线(m是常数,)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.
(1)此抛物线的解析式;
(2)求点A、B、C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是
A.13B.14C.15D.16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,某同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的信息有(         )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论

①a、b同号
②当x=1和x=3时函数值相等
③4a+b=0
④当y=时x的值只能取0
其中正确的个数
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为(   )


A.                  B.                C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数中,其函数与自变量之间的部分对应值如下表所示:
x

0
1
2
3
4

y

4
1
0
1
4

点A()、B()在函数的图象上,则当时,的大小关系正确的是
A.    B.    C.     D.

查看答案和解析>>

同步练习册答案