【题目】如图,在△ABC中,∠C=90°,M为AB中点.将△ACM沿CM翻折,得到△DCM(如图2),P为CD上一点,再将△DMP沿MP翻折,使得D与B重合(如图3),给出下列四个命题:
①BP∥AC;②△PBC≌△PMC;③PC⊥BM;④∠BPC=∠BMC.
其中真命题的个数是( )
A.1B.2C.3D.4
【答案】B
【解析】
由翻折的性质得∠A=∠D=∠PBM,
∴BP∥AC,故①正确;
∵在Rt△ABC中,M为斜边AB中点,
∴AM=BM=CM,∴∠A=∠MCA,
又∵∠A=∠D,∠MCA=∠MCD,
∴∠A=∠MCA=∠D=∠MCD,
∴∠BMC=∠A+∠MCA=∠MCD+∠MCA=∠PCA,
∵BP∥AC,∴∠PCA=∠BPC,
∴∠BPC=∠BMC,故④正确;
若要使△PBC≌△PMC,则∠BCP=∠MCP,此时∠BCP=∠MCP=∠ACM=30°,则∠A=30°,题中无法确定∠A=30°,故②不一定成立;
若要使PC⊥BM,则∠BPC+∠PBA=90°,又∠PBA+∠ABC=90°,则∠BPC=∠ABC,又易知∠ABC=∠BCM,∠BPC=∠ACP,则∠ACP=∠BCM,则∠BCP=∠ACM=∠MCP,则∠A=30°,题中无法确定∠A=30°,故③不一定成立.
综上,①④正确.
故选B.
科目:初中数学 来源: 题型:
【题目】为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表.
请根据以上图表,解答下列问题:
(1)这次被调查的人数共有 人,a= ;
(2)计算并补全频数分布直方图;
(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年月日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共张,并且甲票的数量不少于乙票的倍.
求“铁血巴渝”球迷协会至少购买多少张甲票;
“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加,购票后总共用去元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是( )
A. (-3,1) B. (3,-1) C. (-1,3) D. (1,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果三角形有一边上的中线长恰好等于这边的长,那么这个三角形叫“恰等三角形”,这条中线叫“恰等中线”.
(直角三角形中的“恰等中线”)
(1)如图1,在△ABC中,∠C=90°,AC=,BC=2,AM为△ABC的中线.求证:AM是“恰等中线”.
(等腰三角形中的“恰等中线”)
(2)已知,等腰△ABC是“恰等三角形”,AB=AC=20,求底边BC的平方.
(一般三角形中的“恰等中线”)
(3)如图2,若AM是△ABC的“恰等中线”,则BC2,AB2,AC2之间的数量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,图2是两张形状和大小完全相同的正方形网格纸,正方形网格中每个小正方形的边长为1,线段AC的两个端点均在小正方形的顶点上.
(1)在图1中画出△ABC,使△ABC是以AC为腰的等腰直角三角形,点B在小正方形的顶点上;
(2)在图2中画出△ADC,使△ADC是以AD为腰的等腰三角形,点D在小正方形的顶点上,且△ADC的面积为10.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义为函数的特征数,下面给出特征数为的函数的一些结论:
①当时,函数图象的顶点坐标是;
②当时,函数图象截轴所得的线段长度大于;
③当时,函数在时,随的增大而减小;
④当时,函数图象经过同一个点.
其中正确的结论有( )
A. ①②③④ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com