精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=BC,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,BD′=
5
,求AB的长.
分析:连结CD′,DD′,D关于AC的对称点是D′,进而得到AC垂直平分DD′,CD=CD′,∠D′CD=90°,设CD′=x,则BC=2x,在Rt△BCD′中,利用勾股定理可得BC长,进而得到AB的长.
解答:解:连结CD′,DD′,
∵AB=BC,∠ABC=90°,
∴∠ACB=45°,
∵D关于AC的对称点是D′,
∴AC垂直平分DD′,
∴CD=CD′,∠D′CD=90°,
又∵D是BC的中点,
∴BC=2CD=2CD′,
设CD′=x,则BC=2x,
∴在Rt△BCD′中,
由勾股定理得:CD′2+BC2=BD′2
x2+(2x)2=(
5
2
解得:x=1,
∴CD′=1,CB=2,
∴AB=BC=2.
点评:此题考查了勾股定理,以及轴对称的基本性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案