7£®¼ÆË㣺
£¨1£©$\frac{2x}{x-2}+\frac{4}{2-x}$
£¨2£©£¨$\frac{1}{a-b}$-$\frac{b}{{a}^{2}-{b}^{2}}$£©¡Â$\frac{a}{a+b}$
£¨3£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{x}{x+2}$¡Â$\frac{{{x^2}-x}}{{{x^2}+4x+4}}$-$\frac{x}{x-1}$£¬ÆäÖÐx=1+$\sqrt{3}$£®
£¨4£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{m}^{2}-2m+1}{{m}^{2}-1}$$¡Â£¨m-1-\frac{m-1}{m+1}£©$£¬Æäm=$\sqrt{3}$£®

·ÖÎö £¨1£©¸ù¾Ý·ÖʽµÄ¼Ó·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨2£©ÏÈ»¯¼òÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾Ý·ÖʽµÄ³ý·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨3£©¸ù¾Ý·ÖʽµÄ³ý·¨ºÍ¼õ·¨¿ÉÒÔ»¯¼òËùÇóµÄʽ×Ó£¬È»ºóxµÄÖµ´úÈë¼´¿É½â´ð±¾Ì⣻
£¨4£©ÏÈ»¯¼òÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾Ý·ÖʽµÄ³ý·¨¿ÉÒÔ»¯¼òËùÇóµÄʽ×Ó£¬È»ºó½«mµÄÖµ´úÈë¼´¿É½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©$\frac{2x}{x-2}+\frac{4}{2-x}$
=$\frac{2x-4}{x-2}$
=$\frac{2£¨x-2£©}{x-2}$
=2£»
£¨2£©£¨$\frac{1}{a-b}$-$\frac{b}{{a}^{2}-{b}^{2}}$£©¡Â$\frac{a}{a+b}$
=$\frac{a+b-b}{£¨a-b£©£¨a+b£©}¡Á\frac{a+b}{a}$
=$\frac{a}{£¨a-b£©£¨a+b£©}¡Á\frac{a+b}{a}$
=$\frac{1}{a-b}$£»
£¨3£©$\frac{x}{x+2}$¡Â$\frac{{{x^2}-x}}{{{x^2}+4x+4}}$-$\frac{x}{x-1}$
=$\frac{x}{x+2}¡Á\frac{£¨x+2£©^{2}}{x£¨x-1£©}-\frac{x}{x-1}$
=$\frac{x+2}{x-1}-\frac{x}{x-1}$
=$\frac{2}{x-1}$£¬
µ±x=1+$\sqrt{3}$£¬
ԭʽ=$\frac{2}{1+\sqrt{3}-1}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$£®

£¨4£©$\frac{{m}^{2}-2m+1}{{m}^{2}-1}$$¡Â£¨m-1-\frac{m-1}{m+1}£©$
=$\frac{£¨m-1£©^{2}}{£¨m+1£©£¨m-1£©}¡Â\frac{£¨m-1£©£¨m+1£©-£¨m-1£©}{m+1}$
=$\frac{m-1}{m+1}¡Â\frac{m£¨m-1£©}{m+1}$
=$\frac{m-1}{m+1}¡Á\frac{m+1}{m£¨m-1£©}$
=$\frac{1}{m}$£¬
µ±m=$\sqrt{3}$ʱ£¬Ô­Ê½=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Î¸ùʽµÄ»¯¼òÇóÖµ¡¢·ÖʽµÄ»¯¼òÇóÖµ£¬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ËüÃǵļÆËã·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬¡÷ABCµÄÍâÐÄΪO£¬Èô¡ÏABC=40¡ã£¬¡ÏACB=72¡ã£¬Çó¡ÏBOC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®£¨3x2-5x+1£©£¨-2x3+4x2-x+3£©µÄÕ¹¿ªÊ½ÖУ¬x5¡¢x3¡¢x2ºÍxµÄϵÊýÖ®ºÍ=-29£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®·Ö±ð¶Ôy=-2x2+x+3Ê©ÐÐÅä·½¡¢Òòʽ·Ö½â¾Í¿É»¯Îª¶¥µãʽΪy=-2£¨x-$\frac{1}{4}$£©2+$\frac{25}{8}$£¬»¯Îª½»µãʽΪy=£¨x+1£©£¨-2x+3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®»¯¼ò·Öʽ£º»¯¼ò£¨$\frac{x}{x-5}$-$\frac{x}{5-x}$£©¡Â$\frac{2x}{{x}^{2}-25}$£¬²¢Ñ¡ÔñÒ»¸öÄãϲ»¶µÄÊý×Ö´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ì½¾¿£ºÈçͼ£¬ÒÑÖªÖ±Ïßl1¡Îl2£¬Ö±Ïßl3ºÍÖ±Ïßl1¡¢l2½»ÓÚµãCºÍµãD£¬Ö±Ïßl3ÓÐÒ»µãP
£¨1£©ÈôµãPÔÚC¡¢DÖ®¼äÔ˶¯Ê±£¬ÎÊ¡ÏPAC£¬¡ÏAPB£¬¡ÏPBDÖ®¼äµÄ¹ØϵÊÇ·ñ·¢Éú£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©ÈôµãPÔÚC¡¢DÁ½µãµÄÍâ²àÔ˶¯Ê±£¨PµãÓëµãC¡¢D²»Öغϣ©£¬ÊÔ̽Ë÷¡ÏPAC£¬¡ÏAPB£¬¡ÏPBDÖ®¼äµÄ¹ØϵÓÖÊÇÈçºÎ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬CD·Ö±ð½»AD£¬EGÓÚµãD£¬G£¬EB·Ö±ð½»AD£¬EGÓÚµãA£¬E£¬AC½»EGÓÚµãF£¬FH½»ADÓÚµãH£¬ADƽ·Ö¡ÏBAC£¬EG¡ÎAD£¬CG¡ÍEG£¬¡ÏC=¡ÏAFH£®
£¨1£©¡ÏGFCÓë¡ÏEÏàµÈÂð£¿ËµÃ÷ÀíÓÉ£®
£¨2£©ÅжÏFHÓëADµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆË㣺$\root{3}{8}+|{-5}|+{£¨\sqrt{3}-2£©^0}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÈçͼËùʾ£¬Ô²ÖùµÄ¸ßÊÇ4ÀåÃ×£¬µ±Ô²Öùµ×Ãæ°ë¾¶r£¨cm£©±ä»¯Ê±£¬Ô²ÖùµÄÌå»ýV£¨cm3£©Ò²ËæÖ®±ä»¯£®
£¨1£©ÔÚÕâ¸ö±ä»¯¹ý³ÌÖУ¬×Ô±äÁ¿ÊÇr£¬Òò±äÁ¿ÊÇV£®
£¨2£©Ô²ÖùµÄÌå»ýVÓëµ×Ãæ°ë¾¶rµÄ¹ØϵʽÊÇV=4¦Ðr2£®
£¨3£©µ±Ô²ÖùµÄµ×Ãæ°ë¾¶ÓÉ2±ä»¯µ½8ʱ£¬Ô²ÖùµÄÌå»ýÓÉ16¦Ðcm3±ä»¯µ½256¦Ðcm3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸