精英家教网 > 初中数学 > 题目详情
19.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为$\sqrt{34}$.

分析 直接利用勾股定理计算即可.

解答 解:∵直角三角形的两个直角边分别为3和5,
∴这个直角三角形的斜边长为$\sqrt{{3}^{2}+{5}^{2}}$=$\sqrt{34}$.
故答案为$\sqrt{34}$.

点评 本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图1,点B是线段AC的中点,以线段BC为边作矩形BCDE,点P是线段AC上一动点,连接DP,过点D作DP的垂线,交射线BE于点F,点P从点A出发,沿AC方向运动,当点P和点C重合时运动停止,设线段AP的长为x,△PBF的面积为S,S关于x的函数图象如图2所示(其中0≤x≤2,2<x≤m时,函数的解析式不同).
(1)填空:CD的长度为3;
(2)求S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知如图,直线y1=k1x+b与双曲线y2=$\frac{{k}_{2}}{x}$的图象相交于A(2,-3)、B(-3,m)两点.
(1)求直线和双曲线的解析式.
(2)连接OA、OB,已知点P在x轴上,且S△PBO=2S△ABO,求点P的坐标.
(3)直线AB与x轴交于点C,在y轴上是否存在一点D,使△BCD的周长最小?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,Rt△ABC中,∠B=90°,BC=5$\sqrt{3}$,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A运动.同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B运动.当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F.联结
DE、EF.
(1)求证:四边形AEFD是平行四边形;
(2)当t=$\frac{10}{3}$时,四边形AEFD是菱形;
(3)当t为何值时,EF平分△ABC的面积?
(4)当t为何值时,△DEF与△ABC相似?
(5)当t=$\frac{5}{2}$时,四个三角形△CDF、△ADE、△DEF、△ABC都相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图①,在△ABC中,∠ACB=90°,∠ABC=60°,AB边的中线CE的延长线交等边△ABD的边AD于点F,连接BF.
(1)求证:四边形ACBF是矩形;
(2)如图②,作图①中CD的垂直平分线GH,交AD、BD于点G,H,若BC=2,求DG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,四边形ABCD的对角线交于点O,AB∥CD,O是BD的中点.
(1)求证:△ABO≌△CDO;
(2)若BC=AC=4,BD=6,求△BOC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知等边△ABC的边长为2,D为BC上一点,且∠DAC=45°,则△ABD的面积为2$\sqrt{3}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(2,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)在y轴上是否存在一点M,使△MAB的面积和平行四边形ABDC的面积相等?若存在,求出点M的坐标;若不存在,请说明理由.
(2)若点P在线段BD上运动(不与B,D重合),连接PC,PO,试探究△CDP与△BOP的面积和的取值范围;
(3)若点P在第一、四象限,且在直线BD上运动,请直接写出∠CPO,∠DCP,∠BOP的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.周末,某小组12名同学观看了电影《甲午风云》,其中8人买了甲票,4人买了乙票,总计用了200元,已知每张乙票比甲票售价多5元,设每张甲票的售价为x元,每张乙票的售价为y元.根据题意,可列方程组为$\left\{\begin{array}{l}{8x+4y=200}\\{y-x=5}\end{array}\right.$.

查看答案和解析>>

同步练习册答案