分析 (1)连接AC,交MN于点G,则可知AC垂直平分MN,结合∠MAN=45°,可证明△ABM≌△AGM,可得到BM=MG,同理可得到NG=DN,可得出结论;
(2)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,可得到AE=AN,进一步可证明△AEM≌△ANM,可得结论BM+DN=MN;
(3)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,进一步可证明△MAN≌△FAN,可得到MN=NF,从而可得到DN-BM=MN.
解答 解:
(1)如图1,连接AC,交MN于点G,
∵四边形ABCD为正方形,
∴BC=CD,且BM=DN,
∴CM=CN,且AC平分∠BCD,
∴AC⊥MN,且MG=GN,
∴∠MAG=∠NAG,
∵∠BAC=∠MAN=45°,即∠BAM+∠GAM=∠GAM+∠GAN,
∴∠BAM=∠GAN=∠GAM,
在△ABM和△AGM中
$\left\{\begin{array}{l}{∠B=∠AGM=90°}\\{∠BAM=∠GAM}\\{AM=AM}\end{array}\right.$
∴△ABM≌△AGM(AAS),
∴BM=MG,同理可得GN=DN,
∴BM+DN=MG+GN=MN,
故答案为:BM+DN=MN;
(2)猜想:BM+DN=MN,
证明如下:
如图2,在MB的延长线上,截取BE=DN,连接AE,
在△ABE和△ADN中
$\left\{\begin{array}{l}{AB=AD}\\{∠ABE=∠D}\\{BE=DN}\end{array}\right.$
∴△ABE≌△ADN(SAS),
∴AE=AN,∠EAB=∠NAD,
∵∠BAD=90°,∠MAN=45°,
∴∠BAM+∠DAN=45°,
∴∠EAB+∠BAM=45°,
∴∠EAM=∠NAM,
在△AEM和△ANM中
$\left\{\begin{array}{l}{AE=AN}\\{∠EAM=∠NAM}\\{AM=AM}\end{array}\right.$
∴△AEM≌△ANM(SAS),
∴ME=MN,
又ME=BE+BM=BM+DN,
∴BM+DN=MN;
(3)DN-BM=MN.
证明如下:
如图3,在DC上截取DF=BM,连接AF,
△ABM和△ADF中
$\left\{\begin{array}{l}{AB=AD}\\{∠ABM=∠D}\\{BM=DF}\end{array}\right.$
∴△ABM≌△ADF(SAS),
∴AM=AF,∠BAM=∠DAF,
∴∠BAM+∠BAF=∠BAF+∠DAF=90°,即MAF=∠BAD=90°,
∵∠MAN=45°,
∴∠MAN=∠FAN=45°,
在△MAN和△FAN中
$\left\{\begin{array}{l}{AM=AF}\\{∠MAN=∠FAN}\\{AN=AN}\end{array}\right.$
∴△MAN≌△FAN(SAS),
∴MN=NF,
∴MN=DN-DF=DN-BM,
∴DN-BM=MN.
点评 本题为四边形的综合应用,涉及知识点有正方形的性质、全等三角形的判定和性质、垂直平分线的判定和性质等.在(1)中证得AM=AN是解题的关键,在(2)、(3)中构造三角形全等是解题的关键.本题考查知识点不多,但三角形全等的构造难度较大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 16 | B. | 16.5 | C. | 17 | D. | 18 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com