精英家教网 > 初中数学 > 题目详情

如图,在边长为1的正方形ABCD的各边上,截取AE=BF=CG=DH=x,连接AF、BG、CH、DE构成四边形PQRS.用x的代数式表示四边形PQRS的面积S.则S=________.


分析:由正方形得出AD∥BC,∠BAD=∠ADC=∠DCB=∠ABC=90°,AD=AB=BC=CD,根据全等三角形的判定证出△BAF≌△CBG≌△DCH≌△ADE,得出∠BAF=∠CBG=∠HCD=∠ADE,证△CGR≌△BFQ≌△AEP≌△DHS,得出正方形SPQR,设△DHS的面积是a,设四边形HSPA的面积是b,根据相似三角形的性质求出a、b的值,进一步求出a+b的值,由S四边形PQRS=1×1-4(a+b),代入即可求出答案.
解答:∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠EAD=∠HDC=∠GCB=∠FBA=90°,
∵AE=BF=CG=DH,
∴△EAD≌△FBA≌△GCB≌△HDC(SAS),
∴∠EAP=∠HDE=∠FBQ=∠HCD,
∴∠QPS=∠ADE+∠DAP=∠BAF+∠DAP=∠BAD=90°,
同理∠PSR=90°∠SRQ=90°,
∴四边形PSRQ是矩形,
∵∠HSD=∠GRC=∠APE=∠BQF=90°,∠GCR=∠HDS=∠EAP=∠QBF,CG=HD=AE=BF,
∴△CGR≌△BFQ≌△AEP≌△DHS,
∴CR=DS=AP=BQ,GR=HS=EP=QF,
∵△EAD≌△FBA≌△GCB≌△HDC,
∴DE=AF=BG=CH,
∴SR=SP,
∴矩形SPQR是正方形,
又∵S△ADE=x/2,
设△DHS的面积是a,设四边形HSPA的面积是b,
CH∥AF,
∴△DSH∽△DPA,
=
=
∴a=b,
S△AED=x=2a+b=b,
∴b=
a+b=
∴S四边形PQRS=1×1-4(a+b)=
故答案为:
点评:本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP重合,那么点B的对应点是点
 
,点E在整个旋转过程中,所经过的路径长为
 
 (结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,
1
2
a
长为半径作
DE
EF
FD
,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将边长为3的正六边形A1A2A3A4A5A6,在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,数学公式长为半径作数学公式数学公式数学公式,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:初三数学圆及旋转题库 第8讲:弧长和扇形面积(解析版) 题型:解答题

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,长为半径作,求阴影部分的面积.

查看答案和解析>>

同步练习册答案