精英家教网 > 初中数学 > 题目详情
11.如图,直线y=kx+2k-1与抛物线y=kx2-2kx-4(k>0)相交于A,B两点,抛物线的顶点为P.
(1)抛物线的对称轴为x=1,顶点坐标为(1,-k-4)(用含k的代数式表示).
(2)无论k取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k-1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k-1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC的解析式.

分析 (1)由抛物线的对称轴为x=-$\frac{b}{2a}$可求得抛物线的对称轴方程,接下来,将x=1代入抛物线的解析式可求得顶点的纵坐标;
(2)当x=0时,可得到y=-4,故此抛物线与y轴的交点坐标不变,然后依据抛物线的对称性可求得抛物线经过定点(2,-4);由点C为抛物线上的顶点可知C(0,-4)或C(2,-4),然后PC∥AB可得到点C的坐标为(2,4),设直线PC的解析式为y=ax+b.将点C和点P的坐标代入可求得a=k,故此直线PC与直线y=kx+2k-1平行,将x=1代入y=kx+2k-1求得点Q的纵坐标为3k-1,然后依据关于x轴对称两点的纵坐标互为相反数得到关于k的方程,从而可求得k的值,于是得到直线PC的解析式.

解答 解:(1)∵由x=-$\frac{b}{2a}$可知x=-$\frac{-2k}{2k}$=1,
∴抛物线的对称轴为x=1.
∵将x=1代入得y=-k-4,
∴抛物线的顶点坐标为(1,-k-4).
故答案为:x=1,(1,-k-4).
(2)存在两个定点.
∵x=0时,y=-4,
∴抛物线经过定点(0,-4).
∵抛物线经过定点(0,-4),抛物线的对称轴为x=1,
∴抛物线经过定点(2,-4).
∵C为抛物线上的定点,
∴C(0,-4)或C(2,-4).
∵当C的坐标为(0,-4)时,直线PC的一次项系数小于0,直线AB的一次项系数k>0,
∴PC与AB不平行.
当C的坐标为(2,-4)时.设直线PC的解析式为y=ax+b.
将点C和点P的坐标代入得:$\left\{\begin{array}{l}{a+b=-k-4}\\{2a+b=-4}\end{array}\right.$,
解得:b=-2k-4,a=k.
∴直线PC与直线y=kx+2k-1平行.
∵当x=1时,直线y=kx+2k-1的函数值y=3k-1,
∴Q(1,3k-1).
∵点Q与点P关于x轴对称可得3k-1=k+4,
解得:k=$\frac{5}{2}$.
∴直线PC的解析式为y=$\frac{5}{2}$x-9.

点评 本题主要考查的是二次函数与一次函数的综合应用,解答本题主要应用了二次函数的对称轴方程,二次函数与坐标轴的交点坐标、关于坐标轴对称的点的坐标特点,得到PC经过的定点C的坐标是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.小军做了两个正方体纸盒,已知第一个正方体纸盒棱长为3厘米,第二个正方体纸盒比第一个纸盒体积大189立方厘米,试求第二个正方体纸盒的棱长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.进制也就是进位制,是人们利用符号进行计数的科学方法.对于任何一种进制X进制,就表示某一位置上的数运算时逢X进一位,如十进制数123=1×102+2×101+3×100,记作123(10); 七进制123=1×72+2×71+3×70,记作123(7).各进制之间可进行转化,如:将七进制转化为十进制:123(7)=1×72+2×7+3×70=66,即123(7)=66(10),将十进制转化为七进制:(因为72<66<73,所以做除法从72开始)66÷72=1…17,17÷71=2…3,即66(10)=123(7)
(1)根据以上信息,若将八进制转化为十进制:15(8)=1×81+5×80=13,即15(8)=13(10);若将十进制转化为九进制:98÷92=1…17,17÷91=1…8,即98(10)=118(9)
(2)若将一个十进制两位数转换成九进制和八进制数后,得到一个九进制两位数和一个八进制两位数,首位分别2,3,个位分别为x,y.
①若x=7,则y=1.
②请求出满足上述条件的所有十进制两位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:
(1)FB:FC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AB,BC,AC三边的长分别$\sqrt{2}$,$\sqrt{13}$,$\sqrt{17}$,求这个三角形的面积.

小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.2.5
思维拓展
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为2$\sqrt{2}$a,$\sqrt{10}$a,$\sqrt{26}$a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
(3)若△ABC三边的长分别为$\sqrt{{m}^{2}+4{n}^{2}}$,$\sqrt{{m}^{2}+16{n}^{2}}$,2$\sqrt{{m}^{2}+{n}^{2}}$(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.若(a+6)2+|$\frac{1}{b}$$-\frac{1}{2}$|+(a+2c)2=0.求(a+b+c)2017的值(写出解题过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)$\root{3}{216}$+$\root{3}{1000}$+$\sqrt{(-\frac{2}{3})^{2}}$;
(2)$\root{3}{\frac{26}{27}-1}$+$\sqrt{(1-\frac{5}{4})^{2}}$;
(3)$\root{3}{-27}$+$\sqrt{(-3)^{2}}$-$\root{3}{-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,大正方体上截去一个小正方体后,可得到图(2)中的几何体.
(1)设原大正方体的表面积为S,图(2)中几何体的表面积为S′,那么S′与S的大小关系是(  )
A、S′>S    B、S′=S      C、S′<S       D、不确定
(2)小明说:“设图1中大正方体各棱的长度之和为c,图2中几何体各棱的长度之和为c′,那么c′比c正好多出大正方体3条棱的长度.”若设大正方体的棱长为1,小正方体的棱长为x,请问x为何值时,小明的说法才正确?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.若$\frac{5x+4}{x(x+2)}$=$\frac{A}{x}$+$\frac{B}{x+2}$,求常数A,B的值.

查看答案和解析>>

同步练习册答案