精英家教网 > 初中数学 > 题目详情
16.两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:
(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;
(2)如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;
(3)当点F平移到线段BC的中点时,若四边形AFBD为正方形,猜想△ABC应满足什么条件?请直接写出结论:在此条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请在图3位置画出图形,并求出sin∠CGF的值.

分析 (1)利用平行线的性质以及三角形面积关系得出答案;
(2)证出AD=BF,由平移可知AD∥BF,利用平行四边形的判定得出四边形AFBD为平行四边形即可;
(3)根据题意画出图形,由等腰三角形的性质得出AF⊥BC,证出平行四边形AFBD为矩形,由直角三角形斜边上的中线性质得出AF=$\frac{1}{2}$BC=BF,得出四边形AFBD是正方形;设CF=k,则GF=EF=CB=2k,由勾股定理求出CG,利用sin∠CGF=$\frac{CF}{CG}$求出即可.

解答 解:(1)S△ABC=S四边形AFBD,理由如下:
由题意可得:AD∥EC,
则S△ADF=S△ABD
故S△ACF=S△ADF=S△ABD
则S△ABC=S四边形AFBD

(2)当点F平移到线段BC的中点时,四边形AFBD是平行四边形,理由如下:
∵F为BC的中点,
∴CF=BF,
∵CF=AD,
∴AD=BF,由平移可知AD∥BF,
∴四边形AFBD为平行四边形;

(3)如图3所示:△ABC为等腰直角三角形,即AB=AC,∠BAC=90°;理由如下:
由(2)得:四边形AFBD是平行四边形,
∵AB=AC,F为BC的中点,
∴AF⊥BC,
∴平行四边形AFBD为矩形,
∵∠BAC=90°,F为BC的中点,
∴AF=$\frac{1}{2}$BC=BF,
∴四边形AFBD是正方形;
设CF=k,则GF=EF=CB=2k,
由勾股定理得:CG=$\sqrt{C{F}^{2}+G{F}^{2}}$=$\sqrt{5}$k,
sin∠CGF=$\frac{CF}{CG}$=$\frac{k}{\sqrt{5}k}$=$\frac{\sqrt{5}}{5}$.

点评 此题是四边形综合题目,考查了正方形的判定、平行四边形的判定、矩形的判定、直角三角形斜边上的中线性质、以及等腰直角三角形的性质和锐角三角函数关系等知识;本题综合性强,有一定难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,在平面直角坐标系中,点A,B的坐标分别为(0,3)和(9,0),若坐标轴上存在点C,使△OBC和△OAB相似,则点C的坐标是(-9,0)(1,0)(-1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,对于线段MN的“三等分变换”,给出如下定义:如图1,点P,Q为线段MN的三等分点,即MP=PQ=QN,将线段PM以点P为旋转中心顺时针旋转90°得到PM′,将线段QN以点Q为旋转中心顺时针旋转90°得到QN′,则称线段MN进行了三等分变换,其中M′,N′记为点M,N三等分变换后的对应点.
例如:如图2,线段MN,点M的坐标为(1,5),点N的坐标为(1,2),则点P的坐标为(1,4),点Q的坐标为(1,3),那么线段MN三等分变换后,可得:M′的坐标为(2,4),点N′的坐标为(0,3).

(1)若点P的坐标为(2,0),点Q的坐标为(4,0),直接写出点M′与点N′的坐标;
(2)若点Q的坐标是(0,-$\frac{\sqrt{2}}{2}$),点P在x轴正半轴上,点N′在第二象限.当线段PQ的长度为符合条件的最小整数时,求OP的长;
(3)若点Q的坐标为(0,0),点M′的坐标为(-3,-3),直接写出点P与点N的坐标;
(4)点P是以原点O为圆心,1为半径的圆上的一个定点,点P的坐标为($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)当点N′在圆O内部或圆上时,求线段PQ的取值范围及PQ取最大值时点M′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:($\frac{{x}^{2}-y}{x}$-x-1)÷$\frac{{x}^{2}-{y}^{2}}{{x}^{2}-2xy+{y}^{2}}$,其中x=$\sqrt{5}$,y=$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图是由24个边长为1的小正方形组成的6×4网格,此时小正方形的顶点称为格点,顶点在格点上的三角形称为格点三角形.已知△ABC中,AB=2,AC=$\sqrt{5}$,BC=$\sqrt{13}$.
(1)在图1所给的网格中画出格点△ABC;
(2)在图2所给的网格中共能画出4个与△ABC相似且面积最大的格点三角形,并画出其中一个(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果$\sqrt{y-3}$与(2x-4)2互为相反数,那么2x-y的平方根是±1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HG•HB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若a是33的立方根,$\sqrt{{4}^{2}}$的平方根是b,则$\sqrt{a+b}$=$\sqrt{5}$或1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.
(1)求证:AB=AC;
(2)若sinE=$\frac{1}{3}$,AC=4$\sqrt{2}$a,求△ADE的周长(用含a的代数式表示).

查看答案和解析>>

同步练习册答案