精英家教网 > 初中数学 > 题目详情
(2013•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.
求证:四边形BCDE是矩形.
分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.
解答:证明:∵∠BAD=∠CAE,
∴∠BAD-∠BAC=∠CAE-∠BAC,
∴∠BAE=∠CAD,
∵在△BAE和△CAD中
AE=AD
∠BAE=∠CAD
AB=AC

∴△BAE≌△CAD(SAS),
∴∠BEA=∠CDA,BE=CD,
∵DE=BC,
∴四边形BCDE是平行四边形,
∵AE=AD,
∴∠AED=∠ADE,
∵∠BEA=∠CDA,
∴∠BED=∠CDE,
∵四边形BCDE是平行四边形,
∴BE∥CD,
∴∠CDE+∠BED=180°,
∴∠BED=∠CDE=90°,
∴四边形BCDE是矩形.
点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹
MN
是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于
70
70
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P,若PA=6
3
cm,求AC的长.

查看答案和解析>>

同步练习册答案