精英家教网 > 初中数学 > 题目详情

如图7-22,已知PA平分∠CAB,PC平分∠ACD,AB∥CD.求证:AP⊥PC.

图7-22

证明:∵PA平分∠CAB,PC平分∠ACD,

∴∠PAC=∠CAB,∠PCA=∠ACD,

∴∠PAC+∠PCA=∠CAB+∠ACD=(∠CAB+∠ACD).

∵AB∥CD,

∴∠CAB+∠ACD=180°.

∴∠PAC+∠PCA=90°.

∵△ACP中,∠PAC+∠PCA+∠P=180°,

∴∠P=90°,∴AP⊥PC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.
2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)


解决问题
如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=
140
6
3
海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1:△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.将△AOD绕点O顺时针旋转90°得△OBE,从而构造出以AD、BC、
OC+OD的长度为三边长的△BCE(如图2).若△BOC的面积为1,则△BCE面积等于
2
2


如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
①在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留作图痕迹);
②若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•普陀区模拟)已知线段AB及点C,在线段AB上任取一点Q,线段CQ长度的最小值称为点C到线段AB的准距离.

(1)如图1,已知M,N点的坐标分别为(2,0),(4,0),则点P(1,1)到线段MN的准距离是
2
2

(2)如图2,已知点G到线段OE:y=x(0≤x≤3)的准距离为
2
,且点G的横坐标为1,试求点G的纵坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•南开区一模)阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CBO均为等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构成一个三角形,在计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而等到的△BCE即时以AD、BC、OC+OD的长度为三边长的三角形(如图2).
(I)请你回答:图2中△BCE的面积等于
2
2

(II)请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

同步练习册答案