精英家教网 > 初中数学 > 题目详情
如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是
AB
上任意一点,过C作⊙O的切线分别交PA,PB于D,E.
(1)若△PDE的周长为10,则PA的长为
5
5

(2)连接CA、CB,若∠P=50°,则∠BCA的度数为
115
115
度.
分析:(1)由于PA、PB、DE都是⊙O的切线,可根据切线长定理将△PDE的周长转化为切线PA、PB的长.
(2)根据切线长定理即可证得△PEF 周长等于2PA即可求解;根据切线的性质以及四边形的内角和定理即可求得∠AOB的度数,然后根据∠EOF=
1
2
∠AOB即可求出∠BCA的度数.
解答:解:(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
∴PA=PB=5;

(2)连接OA、OB、AC、BC,在⊙O上取一点F,连接AF、BF,
∵PA、PB分别切⊙O 于A、B;
∴∠PAO=∠PRO=90°
∴∠AOB=360°-90°-90°-50°=130°;
∴∠AFB=
1
2
∠AOB=65°,
∵∠AFB+∠BCA=180°
∴∠BCA=180°-65°=115°;
故答案是:5,115°.
点评:本题主要考查了切线长定理,正确理解图形中的线段与角之间的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA精英家教网=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.
(1)求证:PB是⊙O的切线;
(2)求证:AQ•PQ=OQ•BQ;
(3)设∠AOQ=α,若cosα=
45
,OQ=15,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是
AB
上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为(  )
A、12B、6C、8D、4

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川广安卷)数学 题型:解答题

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.

(1)求证:PB是⊙O的切线;
(2)求证:AQ•PQ=OQ•BQ;
(3)设∠AOQ=α,若cosα= ,OQ=15,求AB的长.
[来源:学科网ZXXK]

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省翠苑中学九年级下学期3月考数学卷(带解析) 题型:解答题

如图所示.P⊙O外一点.PA⊙O的切线.A是切点.B⊙O上一点.且PA=PB,连接AOBOAB,并延长BO与切线PA相交于点Q

(1)求证:PB⊙O的切线;
(2)求证: AQ?PQ= OQ?BQ; 
(3)设∠AOQ=.若cos=OQ= 15.求AB的长

查看答案和解析>>

同步练习册答案