【题目】如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒(0≤t≤6),设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
【答案】(1);(2)① S△PBF=t2﹣7t+6(0≤t<1),S△PBF=﹣t2+7t﹣6(1<t<6);②
当t=3.5时,面积最大,且最大值为6.25;(3)能,F点坐标为:(5, )或(5,2).
【解析】分析:(1)因为抛物线过A、B、C三点,所以此三点的坐标使抛物线的解析式成立.(2)①此题要分作两种情况进行讨论:
一、当P点位于原点左侧,线段OA上;此时0≤t<1,可用t表示出OP、BP的长,欲求△BPF的面积,关键要求出BP边上的高,可过F作FD⊥x轴于D;由于∠CPF=90°,易证得△OPC∽△DFP,根据已知条件可知PF=PE=2PC,即两个相似三角形的相似比为2,那么DF=2OP,由此可得到DF的长,以BP为底,DF为高,即可求得△BPF的面积表达式,也就得到了关于S、t的函数关系式;
二、当P点位于原点右侧,线段BP上;此时1<t<6,可仿照一的方法进行求解;
②根据①得到的S、t的函数关系式,及相应的自变量的取值范围,即可根据函数的性质求得S的最大值及对应的t值,然后进行比较即可得到结果.
(3)当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
①F为直角顶点,过F作FD⊥x轴于D,由(2)可知BP=6-t,DP=2OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t2-2t+5,那么PF==4(t-2t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF÷PD=t-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t-2t+5=6-t,即t=;
②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2.
本题解析:(1)(法一)设抛物线的解析式为y=ax2+bx+c(a≠0),
把A(﹣1,0),B(5,0),C(0,2)
三点代入解析式得: , 解得
∴;
(法二)设抛物线的解析式为y=a(x﹣5)(x+1),
把(0,2)代入解析式得:2=﹣5a,
∴;
∴,
即;
(2)①过点F作FD⊥x轴于D,
当点P在原点左侧时,BP=6﹣t,OP=1﹣t;
在Rt△POC中,∠PCO+∠CPO=90°,
∴∠FPD+∠CPO=90°,
∵∠PCO=∠FPD;
∴∠POC=∠FDP,
∴△CPO∽△PFD,
∴
∴PF=PE=2PC,
∴FD=2PO=2(1﹣t);
∴S△PBF= =t2﹣7t+6(0≤t<1);
当点P在原点右侧时,OP=t﹣1,BP=6﹣t;
∵△CPO∽△PFD,
∴FD=2(t﹣1);∴S△PBF= =﹣t2+7t﹣6(1<t<6);
②当0≤t<1时,S=t2﹣7t+6;
此时t在t=3.5的左侧,S随t的增大而减小,
则有:当t=0时,Smax=0﹣7×0+6=6;
当1<t<6时,S=﹣t2+7t﹣6;
由于1<3.5<6,故当t=3.5时,Smax=﹣3.5×3.5+7×3.5+6=6.25;
综上所述,当t=3.5时,面积最大,且最大值为6.25.
(3)能;①若F为直角顶点,过F作FD⊥x轴于D,
由(2)可知BP=6﹣t,DP=2OC=4,
在Rt△OCP中,OP=t﹣1,
由勾股定理易求得CP2=t2﹣2t+5,
那么PF
在Rt△PFB中,FD⊥PB,
由射影定理可求得PB=PF2÷PD=t2﹣2t+5,
而PB的另一个表达式为:PB=6﹣t,
联立两式可得t2﹣2t+5=6﹣t,
即t=,P点坐标为(,0),
则F点坐标为:(5, );
②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,
那么BP=2OC=4,即OP=OB﹣BP=1,此时t=2,P点坐标为(1,0).FD=2(t﹣1)=2,
则F点坐标为(5,2).
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(8,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求反比例函数的解析式和n的值;
(2)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求G点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年淘宝网都会举办“双十一”购物活动,许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售一件A商品成本为50元,网上标价80元.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引买主,问平均每次降价率为多少,才能使这件A商品的利润率为10%?(参考数据: ≈0.83,≈0.64,≈1.05)
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天,先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出60件A商品.在“双十一”购物活动这天,乙网店先将网上标价提高a%,再推出五折销售的促销活动,吸引了大量网购者,乙网店在“双十一”购物活动当天卖出的A商品数量也比原来一周卖出的A商品数量增加了a%,这样“双十一”活动当天乙网店的利润达到了3600元,求乙网店在“双十一”购物活动这天的网上标价为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com