精英家教网 > 初中数学 > 题目详情
4.二次函数y=ax2+bx+c的图形如图所示,则一次函数y=ax-c与反比例函数y=$\frac{a+b+c}{x}$在同一坐标系内的图象大致为(  )
A.B.C.D.

分析 根据抛物线图形,可得a>0,c<0,再由x=1时,y=a+b+c<0,即可判断出答案.

解答 解:由抛物线图形,可得a>0,c<0,根据一次函数y=ax-c的图形,可排除B、D;
当x=1时,y=a+b+c<0,根据反比例函数图象,可排除A.
故选C.

点评 本题考查了反比例函数的图象及二次函数的图形,注意隐含条件的挖掘“当x=1时,y=a+b+c<0”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上,连接FC.
(1)求证:△ADG≌△ABE;
(2)图1中,当点E由B向C运动时,∠FCN的大小总保持不变,请求出∠FCN的大小;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,一次函数y=x+3的图象与反比例函数y=$\frac{4}{x}$的图象交于A,B两点,与y轴交于点C,C点关于x轴的对称点是D点,则△ABD的面积是15.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知抛物线y=ax2+bx+c,经过(-1,0),(0,3),(2,-3)三点,求这条抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)在同一直角坐标系内分别作出一次函数y=2x,y=2x-1,y=2x+3的图象.
(2)直线y=2x,y=2x-1,y=2x+3具有怎样的位置关系?直线y=2x如何运动得到直线y=2x-1,如何运动得到直线y=2x+3?
(3)一次函数y=2x,y=2x-1,y=2x+3的关系式有什么共同特点?
(4)由此你能得到什么结论?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.直线y=k1x+b与直线y=k2x的图象交于点(-2,4),且在y轴上的截距是2,求:
(1)这两个函数关系式;
(2)这两条直线与x轴所围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与CA、CB分别交于E、F.
(1)如图1,当DE=DF时,求$\frac{AC}{BC}$的值.
(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:一次函数的图象经过(2,-3)和(1,2)两点.
(1)求出函数的解析式并画出图象;
(2)判断点A(-1,10)和点B(3,-8)是否在这个函数的图象上;
(3)求此函数图象与坐标轴围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知,平行四边形ABCD在直角坐标系内的位置如图所示,且AB=2,BC=3,∠ABC=60°,点C在原点,把平行四边形ABCD沿x轴正半轴作无滑动的连续翻转,经过505次翻转后,点A的坐标是(  )
A.($\frac{2525}{2}$,$\sqrt{3}$)B.($\frac{2521}{2}$,$\frac{3}{2}$$\sqrt{3}$)C.(1008,$\sqrt{3}$)D.(1008,$\frac{3}{2}$$\sqrt{3}$)

查看答案和解析>>

同步练习册答案