分析 (1)根据AB=3,BC=2即可得;
(2)由题意知a<c,d>b,a<d,根据绝对值性质化简原式可得c-b,结合BC=2可得答案;
(3)①由题意知点P回到起点需要6秒,点Q回到起点需要4秒知当t=4时,运动停止,从而得出BP=1,BC=2,CQ=4,继而可得PQ;
②分以下两种情况:1、点Q未到达点C时;2、点P由点B折返时,根据PQ=5列方程求解可得.
解答 解:(1)若点C为原点,则点B表示-2,点A表示-5,
故答案为:-5;
(2)由题意知a<c,d>b,a<d,
则|a-c|+|d-b|-|a-d|=c-a+d-b-(d-a)
=c-a+d-b-d+a
=c-b,
∵BC=2,即c-b=2,
故答案为:2;
(3)①由题意知点P回到起点需要6秒,点Q回到起点需要4秒,
∴当t=4时,运动停止,
此时BP=1,BC=2,CQ=4,
∴PQ=7;
②、分以下两种情况:
1、当点Q未到达点C时,可得方程:t+2t+5=3+2+4,解得t=$\frac{4}{3}$;
2、当点P由点B折返时,可得方程(t-3)+2(t-3)+2=5,解得:t=$\frac{10}{3}$;
综上,当t=$\frac{4}{3}$或t=$\frac{10}{3}$时,PQ=5.
点评 本题主要考查绝对值的性质、两点间的距离公式和一元一次方程的应用,根据两点间的距离为5,分点Q未到达点C时和点P由点B折返两种情况列出方程是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com