精英家教网 > 初中数学 > 题目详情
3.如图,将△ABC绕点C按顺时针方向旋转64°至△A′B′C,使点A′落在BC的延长线上.则∠ACB′=52度.

分析 由旋转性质得∠BCB′=∠ACA′=64°,继而可得答案.

解答 解:由旋转性质知,∠BCB′=∠ACA′=64°,
∵点A′落在BC的延长线上,
∴∠ACB′=180°-∠BCB′-∠ACA′=52°,
故答案为:52.

点评 本题主要考查旋转,掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,已知一次函数y=kx+b的图象与反比例函数y=$\frac{4-2m}{x}$(x>0)的图象交于点A(2,-4)和点B,与x轴交于点C,且$\frac{BC}{AB}$=$\frac{1}{3}$.
(1)求m的值;
(2)求一次函数的解析式;
(3)若在x轴上存在点P使得△PAB的周长最小,请求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下面的材料
勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.
由图1可以得到(a+b)2=4×$\frac{1}{2}$ab+c2
整理,得a2+2ab+b2=2ab+c2
所以a2+b2=c2
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,如图所示的正方形网格中,每个网格的单位长度为1,△ABC的顶点均在格点上,根据所给的平面直角坐标系解答下列问题:
(1)A点的坐标为(-2,3);B点的坐标为(-6,0);C点的坐标为(-1,0).
(2)将点A,B,C的横坐标保持不变,纵坐标分别乘以-1,分别得点A′,B′,C′,并连接A′,B′,C′得△A′B′C′,请画出△A′B′C′
(3)△A′B′C′与△ABC的位置关系是关于x轴对称.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:
(1)(x+2)(x-3)-x(x-4),其中x=-$\frac{1}{3}$
(2)(a+b)(a-b)+(a+b)2-2a2,其中a=3,b=-$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:
学生孝敬父母情况统计表:
选项频数频率
Am0.15
B60p
Cn0.4
D480.2
(1)表中m=36,n=96,p=0.25.
(2)这次被调查的学生有多少人?并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.列方程组解应用题:某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况下因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:(-$\frac{1}{4}$)2017×42017=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,△ABO的三个顶点坐标分别为A(1,3),B(4,0),O(0,0).
(1)画出将△ABO向左平移4个单位长度,再向上平移2个单位长度后得到的△A1B1O1
(2)在(1)中,若△ABC上有一点M(3,1),则其在△A1B1O1中的对应点M1的坐标为(-1,3);
(3)若将(1)中△A1B1O1看成是△ABO经过一次平移得到的,则这一平移的距离是2$\sqrt{5}$;
(4)画出△ABO关于点O成中心对称的图形△A2B2O.

查看答案和解析>>

同步练习册答案