精英家教网 > 初中数学 > 题目详情

如图,l是四形形ABCD的对称轴,如果ADBC,有下列结论.ABCD AB=BC ABBC AO=OC其中正确的结论是______________(把你认为正确的结论的序号都填上)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).

(1)图2中的阴影部分的面积为
(b-a)2
(b-a)2

(2)观察图2请你写出 (a+b)2、(a-b)2、ab之间的等量关系是
(a+b)2-(a-b)2=4ab
(a+b)2-(a-b)2=4ab

(3)根据(2)中的结论,若x+y=5,x•y=
94
,则x-y=
±4
±4

(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?
(a+b)•(3a+b)=3a2+4ab+b2
(a+b)•(3a+b)=3a2+4ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.(1)求的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

   (1)求的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

 


查看答案和解析>>

同步练习册答案