精英家教网 > 初中数学 > 题目详情
9.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)请你判定“抛物线三角形”的形状(不必写出证明过程);
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”.请问是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,请说明理由.

分析 (1)抛物线的顶点必在抛物线与x轴两交点连线的垂直平分线上,因此这个“抛物线三角形”一定是等腰三角形.
(2)观察抛物线的解析式,它的开口向下且经过原点,由于b>0,那么其顶点在第一象限,而这个“抛物线三角形”是等腰直角三角形,必须满足顶点坐标的横、纵坐标相等,以此作为等量关系来列方程解出b的值.
(3)由于矩形的对角线相等且互相平分,所以若存在以原点O为对称中心的矩形ABCD,那么必须满足OA=OB,结合(1)的结论,这个“抛物线三角形”必须是等边三角形,首先用b′表示出AE、OE的长,通过△OAB这个等边三角形来列等量关系求出b′的值,进而确定A、B的坐标,即可确定C、D的坐标,利用待定系数即可求出过O、C、D的抛物线的解析式.

解答 解:(1)如图;
根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.

(2)当抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,
该抛物线的顶点($\frac{b}{2}$,$\frac{{b}^{2}}{4}$),满足$\frac{b}{2}$=$\frac{{b}^{2}}{4}$(b>0).
则b=2.

(3)存在.
如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.
当OA=OB时,平行四边形ABCD是矩形,
又∵AO=AB,
∴△OAB为等边三角形.
∴∠AOB=60°,
作AE⊥OB,垂足为E,
∴AE=OEtan∠AOB=$\sqrt{3}$OE.
∴$\frac{b{′}^{2}}{4}$=$\sqrt{3}$•$\frac{b′}{2}$(b>0).
∴b′=2$\sqrt{3}$.
∴A($\sqrt{3}$,3),B(2$\sqrt{3}$,0).
∴C(-$\sqrt{3}$,-3),D(-2$\sqrt{3}$,0).
设过点O、C、D的抛物线为y=mx2+nx,则$\left\{\begin{array}{l}{12m-2\sqrt{3}n=0}\\{3m-\sqrt{3}n=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=1}\\{n=2\sqrt{3}}\end{array}\right.$.
故所求抛物线的表达式为y=x2+2$\sqrt{3}$x.

点评 本题考查了二次函数综合题,这道二次函数综合题融入了新定义的形式,涉及到:二次函数的性质及解析式的确定、等腰三角形的判定和性质、矩形的判定和性质等知识,难度不大,重在考查基础知识的掌握情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.阅读理解:大家知道:$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部写出来,因为$\sqrt{2}$的整数部分是1,所以我们可以用$\sqrt{2}-1$来表示$\sqrt{2}$的小数部分.请你解答:已知:x是$10+\sqrt{3}$的整数部分,y是$10+\sqrt{3}$的小数部分,求x-y+$\sqrt{3}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,l3∥l4∥l5,l1交l3,l4,l5于E,A,C,l2交l3,l4,l5于D,A,B,以下结论的错误的为(  )
A.$\frac{EA}{AC}$=$\frac{DA}{AB}$B.$\frac{BA}{BD}$=$\frac{CA}{CE}$C.$\frac{CA}{CE}$=$\frac{DA}{DB}$D.$\frac{EA}{EC}$=$\frac{DA}{DB}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某超市用6000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨13200元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果在这两次购进中超市将该品种苹果按每千克7元的定价出售,则全部售完这两次购进的苹果,超市获得的利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)(3x+1)(x+2);
(2)($\frac{6}{5}$a3x4-0.9ax3)÷$\frac{3}{5}$ax3
(3)4(x+1)2-(2x+5)(2x-5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,把长方形ABCD沿对角线BD折叠,重合部分为△EBD.
(1)求证:△EBD为等腰三角形.
(2)图中有哪些全等三角形?
(3)若AB=6,BC=8,求△DC′E的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在网格中有一个四边形图案.
(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;
(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;
(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列关于单项式$-\frac{{3x{y^2}}}{5}$的说法中,正确的是(  )
A.系数是3,次数是2B.系数是$-\frac{3}{5}$,次数是2
C.系数是$\frac{3}{5}$,次数是3D.系数是$-\frac{3}{5}$,次数是3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.2016年12月28日沪昆高铁已经开通运营,从昆明到某市,可乘普通列车或高铁,已知高铁的行驶里程是400千米,普通列车的行驶里程是高铁的行驶里程的1.3倍.
(1)求普通列车的行驶里程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比普通列车所需时间缩短3小时,求高铁的平均速度.

查看答案和解析>>

同步练习册答案