精英家教网 > 初中数学 > 题目详情
已知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(如图1).
(1)求⊙O半径;
(2)sin∠HAO的值;
(3)如图2,设⊙O与y轴正半轴交点P,点E、F是线段OP上的动点(与P点不重合),连接并延长DE,DF交⊙O于点B,C,直线BC交y轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化?请说明理由.

【答案】分析:(1)因为点D在圆上,根据点D的坐标利用勾股定理即可求得OD的长,即半径;
(2)连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,根据同角的余角相等可得到∠HAO=∠OHQ,根据已知可求得sin∠OHQ的值,则sin∠HAO的值也就求得了;
(3)设点D关于y轴的对称点为H,连接HD交OP于Q,则HD⊥OP,根据角平分线的性质及垂径定理可得到∠CGO=∠OHQ,则求得sin∠OHQ的值sin∠CGO也就求得了.
解答:解:(1)点D(4,3)在⊙O上,
∴OD2=42+32
∴OD=5,
∴⊙O的半径r=OD=5;(1分)

(2)如图1,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,
∴∠HAO=∠OHQ
∴sin∠HAO=sin∠OHQ==

(3)连接DH交y轴于点Q,连接OH交BC于点T(如图2).
∵D与H关于y轴对称,
∴DH⊥EF,
又∵△DEF为等腰三角形,
∴DH平分∠BDC,
∴∠BDH=∠HDC,
=
∵HO为⊙O半径,
∴OT⊥BC,
∴∠CGO=∠QHO,
∴当E、F两点在OP上运动时,sin∠CGO的值不变.
点评:此题主要考查学生对切线性质,关于x轴、y轴、原点对称点的坐标,解直角三角形及垂径定理等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知一次函数过点A(1,2)与 B(2,5),求这个函数的解析式.
(2)已知一次函数y=3x+6,求函数图象与坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线过点A(0,6),B(2,0),C(6,0),直线AB交抛物线的对称轴于点F,直线AC交抛物线对称轴于点E.
(1)求抛物线的解析式;
(2)求证:点E与点F关于顶点D对称;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有,请求出所有合条件的点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1,求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O过点D(4,3),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.

查看答案和解析>>

同步练习册答案