精英家教网 > 初中数学 > 题目详情
4.在Rt△ABC中,∠C=90°
(1)已知c=25,b=15,求a;  
(2)已知a=$\sqrt{6}$,∠B=60°,求b,c.

分析 (1)根据题意画出图形,利用勾股定理即可得出结论;
(2)根据锐角三角函数的定义即可得出结论.

解答 解:(1)如图,∵Rt△ABC中,∠C=90°,c=25,b=15,
∴a=$\sqrt{{c}^{2}-{b}^{2}}$=$\sqrt{2{5}^{2}-1{5}^{2}}$=20;

(2)∵a=$\sqrt{6}$,∠B=60°,
∴b=$\sqrt{6}$×tan60°=$\sqrt{6}$×$\sqrt{3}$=3$\sqrt{2}$,c=$\frac{a}{cos60°}$=$\frac{\sqrt{6}}{\frac{1}{2}}$=2$\sqrt{6}$.

点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.(1)$\sqrt{\frac{1}{3}}$-$\sqrt{12}$ 
(2)$\frac{2\sqrt{12}-\sqrt{75}}{\sqrt{3}}$+(1-$\sqrt{3}$)0
(3)(-$\frac{1}{2}$)-2-|$\sqrt{3}$-2|+$\frac{1}{2-\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)cos60°+$\frac{\sqrt{2}}{2}$sin45°+tan30°•cos30°;
(2)$\sqrt{ta{n}^{2}60°-4tan60°+4}$-$\frac{2\sqrt{2}tan45°}{tan60°-tan45°}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=$\sqrt{3}$+1,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.当x=5时,式子ax3-bx+1的值是2,当x=-5时,求式子ax3-bx+2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.化简:
(1)(3k2+7k)+(4k2-3k+1)
(2)-$\frac{1}{4}$(2k3+4k2-28)+$\frac{1}{2}$(k3-2k2+4k)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算
(1)(1+$\frac{1}{{a}^{2}-1}$)÷$\frac{a}{a-1}$
(2)$\frac{2a+2}{a-1}$÷(a+1)-$\frac{{a}^{2}-1}{{a}^{2}-2a+1}$
(3)($\frac{2}{3}$)2÷($\frac{2}{3}$)2-(-2)-1÷($\frac{1}{2}$)2-($\frac{4}{5}$-0.2)0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在平面直角坐标系中,点A1,A2…,An都在x轴的正半轴上,OA1=1,A1A2=2,…An-1 An=n,分别以OA1,A1A2,…An-1 An为边,在x轴上方作等边三角形△OA1B1,△A1A2B2,…△An-1 AnBn,点B1,B2,…,Bn均落在第一象限,现有一动点P从点O出发,以每秒1个单位的速度沿折线O→B1→A1→B2→A2→…→Bn→An运动,则经2017秒后点P的坐标是(1008.5,$\frac{37\sqrt{3}}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在直线a上取A、B、C三点,使得AB=9cm,BC=4cm,则线段AC的长是13cm或5cm.

查看答案和解析>>

同步练习册答案