精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、精英家教网D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=
3
3
x+2
3
上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.
分析:(1)根据A点的坐标和圆的半径,连接AC,即可在直角三角形ACO中求出OC的长和∠BAC的度数,进而可在直角三角形BOC中,根据OC的长和∠B的度数求出B的坐标,然后用待定系数法求出直线BC的解析式.
另一种解法:得出OC的值和∠B的度数后,OC的值就是直线BC的解析式中c的值,而斜率k就是tan∠B,由此可直接求出直线BC的解析式.
(2)由于E,F正好是抛物线与x轴的交点,根据圆和抛物线的对称性,可知A点必在抛物线的对称轴上,可先根据A的坐标求出顶点的坐标,然后用待定系数法求出抛物线的解析式.
(3)将C点的坐标代入抛物线的解析式中即可判断出C点是否在抛物线上.
解答:精英家教网解:(1)连接AC,因为BC为⊙A的切线,
则AC=4,OA=2,∠ACB=90°
又因为∠AOC=90°,
所以∠OCA=30°,∠A=60°,∠B=30度.
所以OC=OA•tan60°=2
3
,OB=OC•cot30°=2
3
×
3
=6,
所以B(-6,0),C(0,2
3
).
设直线BC的解析式为y=kx+2
3

则0=-6k+2
3

解得k=
3
3

所以y=
3
3
x+2
3


(2)因为AE=4,OA=2,
所以OE=2,OF=6,
则E(-2,0),F(6,0).
设抛物线的解析式是y=(9x+2)(x-6),
则y=a(x-2)2-16a,
所以顶点坐标是(2,-16a).
因为(2,-16a)在直线y=
3
3
x+2
3
上,
所以-16a=
2
3
3
+2
3
,a=-
3
6

所以y=-
3
6
x2+
2
3
3
x+2
3


(3)当x=0时,y=2
3
.故点C在抛物线上.
点评:本题主要考查了函数解析式的确定,切线的性质,勾股定理,解直角三角形等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案