【题目】在平而直角坐标系中,已知点,直线经过点.抛物线恰好经过三点中的两点.
判断点是否在直线上.并说明理由;
求的值;
平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.
【答案】(1)点在直线上,理由见详解;(2)a=-1,b=2;(3)
【解析】
(1)先将A代入,求出直线解析式,然后将将B代入看式子能否成立即可;
(2)先跟抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,判断出抛物线只能经过A,C两点,然后将A,C两点坐标代入得出关于a,b的二元一次方程组;
(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,根据顶点在直线上,得出k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,在将式子配方即可求出最大值.
(1)点在直线上,理由如下:
将A(1,2)代入得,
解得m=1,
∴直线解析式为,
将B(2,3)代入,式子成立,
∴点在直线上;
(2)∵抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,
∴抛物线只能经过A,C两点,
将A,C两点坐标代入得,
解得:a=-1,b=2;
(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,
∵顶点在直线上,
∴k=h+1,
令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,
∵-h2+h+1=-(h-)2+,
∴当h=时,此抛物线与轴交点的纵坐标取得最大值.
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.
(1)求二次函数的解析式;
(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量(单位:件)与线下售价(单位:元/件,)满足一次函数的关系,部分数据如下表:
(1)求与的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是
A. AB=EF B. AB=2EF C. AB=EF D. AB=EF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于已知的两个函数,任取自变量的一个值,当时,它们对应的函数值相等;当时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数,它的相关函数为.
(1)已知点在一次函数的相关函数的图像上,求的值;
(2)已知二次函数.
①当点在这个函数的相关函数的图像上时,求的值;
②当时,求函数的相关函数的最大值和最小值.
(3)在平面直角坐标系中,点、的坐标分别为、,连结.直接写出线段与二次函数的相关函数的图像有两个公共点时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年植树节期间,某景观园林公司购进一批成捆的,两种树苗,每捆种树苗比每捆种树苗多10棵,每捆种树苗和每捆种树苗的价格分别是630元和600元,而每棵种树苗和每棵种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进种树苗和种树苗各多少棵?并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过,,三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段于点E,若.
①求直线的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.
(1)如图1,连接CD,求线段CD的长;
(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;
(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com