精英家教网 > 初中数学 > 题目详情
如图,一段抛物线 轴交于点;将向右平移得第2段抛物线,交轴于点;再将向右平移得第3段抛物线,交轴于点;又将向右平移得第4段抛物线,交轴于点,若上,则的值是         
2

试题分析:由抛物线的函数可知,.则可推出图象的函数为,将点坐标代入得,.
【考点】坐标与图象平移.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.
九(1)班数学建模兴趣小组根据调查,整理出第x天()的捕捞与销售的相关信息如下:
鲜鱼销售单价(元/kg)
20
单位捕捞成本(元/kg)

捕捞量(kg)
950-10x
(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(元)之间的函数关系式;(当天收入=日销售额日捕捞成本)
(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线交于点A 、B,与y轴交于点C.

(1)求点A、B的坐标;
(2)若点P是直线x=1上一点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是(     )
 
A.二次函数图像与x轴交点有两个
B.x≥2时y随x的增大而增大
C.二次函数图像与x轴交点横坐标一个在-1~0之间,另一个在2~3之间
D.对称轴为直线x=1.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图(a),抛物线经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。∠ONE=30°,

(1)求抛物线的解析式及顶点D的坐标;
(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;
(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若直线在第二、四象限都无图像,则抛物线(   )
A.开口向上,对称轴是y轴B.开口向下,对称轴平行于y轴
C.开口向上,对称轴平行于y轴D.开口向下,对称轴是y轴

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则函数在同一直角坐标系内的大致图象是(     )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线向下平移1个单位,得到的抛物线是(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案