精英家教网 > 初中数学 > 题目详情
(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=
3
5
,AK=2
3
,求FG的长.
分析:(1)如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;
(2)AC与EF平行,理由为:如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;
(3)如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.
解答:解:(1)如答图1,连接OG.
∵EG为切线,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.

(2)AC∥EF,理由为:
连接GD,如答图2所示.
∵KG2=KD•GE,即
KG
KD
=
GE
KG

KG
GE
=
KD
KG
,又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;

(3)连接OG,OC,如答图3所示.
sinE=sin∠ACH=
3
5
,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2
即(3t)2+t2=(2
3
2,解得t=
30
5

设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2
即(r-3t)2+(4t)2=r2,解得r=
25
6
t=
5
30
6

∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
5
30
6
,tan∠OFG=tan∠CAH=
CH
AH
=
4
3

∴FG=
OG
tan∠OFG
=
5
6
30
4
3
=
5
30
8
点评:此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=
70°
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=
k
x
(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若
BE
BF
=
1
m
(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则
S1
S2
=
m-1
m+1
m-1
m+1
. (用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,在平面直角坐标系xOy中,一次函数y=
5
4
x+m
(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究
M1P•M2P
M1M2
是否为定值,并写出探究过程.

查看答案和解析>>

同步练习册答案