精英家教网 > 初中数学 > 题目详情
13.如图,AB是⊙O的直径,点P在AB上,C,D是圆上的两点,OE⊥PD,垂足为E,若∠DPA=∠CPB,AB=12,DE=4$\sqrt{2}$.
(1)求OE的长;
(2)求证:PD+PC=2DE;
(3)若PC=3$\sqrt{2}$,求DP的长和sin∠CPB的值.

分析 (1)首先连接OD,由OE⊥PD,AB=12,DE=4$\sqrt{2}$,直接利用垂径定理求解即可求得答案;
(2)首先延长CP交⊙O于点F,过点O作OG⊥PF于点G,连接OF,易证得Rt△OEP≌Rt△OGP,Rt△OED≌Rt△OGD,即可得PE=PG,DE=FG,继而证得结论;
(3)由PD+PC=2DE,可求得PD的长,然后由勾股定理求得OP的长,继而求得答案.

解答 (1)解:连接OD,
∵AB=12,
∴OD=6,
∵OE⊥PD,DE=4$\sqrt{2}$,
∴OE=$\sqrt{O{D}^{2}-D{E}^{2}}$=2;

(2)证明:延长CP交⊙O于点F,过点O作OG⊥PF于点G,连接OF,
∴FG=CG,
∵∠DPA=∠CPB=∠FPA,
∴OE=OG,
在Rt△OEP和Rt△OGP中,
$\left\{\begin{array}{l}{OP=OP}\\{OE=OG}\end{array}\right.$,
∴Rt△OEP≌Rt△OGP(HL),
同理:Rt△OED≌Rt△OGF,
∴PE=PG,DE=FG,
∴PD=PF,
∴PD+PC=PF+PC=FC=2FG=2DE;

(3)∵PC=3$\sqrt{2}$,PD+PC=2DE,
∴PD+3$\sqrt{2}$=8$\sqrt{2}$,
∴PD=5$\sqrt{2}$,
∴PE=PD-DE=5$\sqrt{2}$-4$\sqrt{2}$=$\sqrt{2}$,
∴OP=$\sqrt{O{E}^{2}+P{E}^{2}}$=$\sqrt{6}$,
∴sin∠CPB=sin∠EPD=$\frac{OE}{OP}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$.

点评 此题属于圆的综合题.考查了垂径定理、全等三角形的判定与性质、勾股定理以及锐角三角函数的知识.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.(1)解不等式组$\left\{\begin{array}{l}-2x+1≤-1…(1)\\ \frac{1+2x}{3}>x-1…(2)\end{array}$
(2)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.为了更好的落实阳光体育运动,学校需要购买一批足球和篮球,已知一个足球比一个篮球的进价高30元,买一个足球和两个篮球一共需要300元.
(1)求足球和篮球的单价;
(2)学校决定购买足球和篮球共100个,为了加大校园足球活动开展力度,现要求购买的足球不少于60个,且用于购买这批足球和篮球的资金最多为11000元.试设计一个方案,使得用来购买的资金最少,并求出最小资金数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某商场标价销售某种商品时,每件可获利35元,按标价八折销售该商品10件与将标价降低25元销售该商品15件所获利润相等.
(1)求该商品进价、标价分别是多少?
(2)该商品按标价的八折销售出现积压,商场准备进一步打折销售,但要保持利润率不低于20%,则最低可打几折?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为建设“生态园林城市”吉安市绿化提质改造工程正如火如茶地进行,某施工队计划购买甲、乙两种树苗共400棵对某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知点P(3-3a,1-2a)在第四象限,则a的取值范围在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(3,3),B(1,2)C(4,1),点E坐标为(1,1).
(1)在网格内画出和△ABC以点E为位似中心的位似图形△A1B1C1,且△A1B1C1 和△ABC的位似比为2:1;
(2)分别写出A1、B1、C1三个点的坐标. A1(-3,-3);B1(1,-1);C1(-5,1)
(3)求△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.用不等式表示图中的解集,其中正确的是(  )
A.x>2B.x<2C.x≥2D.x≤2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx与x轴的正半轴交于点A,抛物线的顶点为B,直线y=kx-6k经过点A、B两点,且tan∠BAO=3.
(1)求抛物线的解析式;
(2)点P在第一象限内对称轴右侧的抛物线上,其横坐标为t,连接OP,交对称轴于点C,过点C作CD∥x轴,交直线AB于点D,连接PD,设线段PD的长为d,求d与x之间的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,点E在线段BC上,连接EP,交BD于点F,点G是BE的中点,过点G作GQ∥x轴,交PE的延长线于点Q,当∠OPQ=2∠AOP,且EF=PF时,求点P、Q的坐标,并判断此时点Q是否在(1)中的抛物线上.

查看答案和解析>>

同步练习册答案