【题目】如图,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由.
你添加的条件是
【答案】AB=AC或BD=DC等,详见解析
【解析】
因为AB是⊙O的直径,所以∠ADB=∠ADC=90°,即AD是BC边上的高,可添加AB=AC,当AB=AC时,△ABC是等腰三角形,由等腰三角形的性质可知,∠ABD=∠ACD及底边上的高与底边上的中线重合,即BD=CD,可根据“SSS”,“H.L”,“SAS”,“AAS”,“ASA”证明△ABD≌△ACD.
解:本题答案不唯一,添加的条件可以是
①AB=AC,②∠B=∠C,③BD=DC(或D是BC中点),
④∠BAD=∠CAD(或AD平分∠BAC)等.
添加的条件是AB=AC
理由如下:
∵AB是⊙O的直径
∴∠ADB=∠ADC=90°
在Rt△ABD和Rt△ACD中,
∴Rt△ABD≌Rt△ACD(H.L)
即△ABD≌△ACD.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC边的中点,将△DCE沿DE折叠,使点C落在点F处,延长EF交AB于点G,连接DG、BF.
(1)求证:DG平分∠ADF;
(2)若AB=12,求△EDG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】时下娱乐综艺节目风靡全国,随机对九年级部分学生进行了一次调查,对最喜欢《我是喜剧王》(记为A)、《王牌对王牌》(记为B)、《奔跑吧,兄弟》(记为C)、《欢乐喜剧人》(记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:
(1)求本次调查一共选取了多少名学生;
(2)将条形统计图补充完整;
(3)若九年级共有1900名学生,估计其中最喜欢《奔跑吧,兄弟》的学生大约是多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.
(1)求证:AC是⊙O的切线;
(2)若cosC=,AC=6,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,AB=12.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求△FDG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点为坐标原点,将含30°角的放在第一象限,其中30°角的对边长为1,斜边的端点,分别在轴的正半轴,轴的正半轴上滑动,连接,则线段的长的最大值是( )
A.2B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com