如图,把量角器的0°刻度线与∠MON的顶点O对齐,边OM正好经过70°刻度线处的A点,边ON正好经过130°刻度线处的B点,则∠MON的大小是( )
A. 20° B. 30° C. 40° D. 60°
B 【解析】试题分析:如图,设半圆量角器的圆心为C,连接AC、BC, ∵边OM正好经过70°刻度线处的A点, ∴∠AOC=(180°-70°)=55°, ∵边ON正好经过130°刻度线处的B点, ∴∠BOC=(180°-130°)=25°, ∴∠MON=∠AOC-∠BOC=55°-25°=30°. 故选B.科目:初中数学 来源:2018人教版八年级数学下册练习:第十七章达标检测卷 题型:单选题
如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为( )
A. B. C. D.
D 【解析】【解析】 ∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=.在Rt△ADC中,DC==1,∴BC=.故选D.查看答案和解析>>
科目:初中数学 来源:2017-2018学年北师大版七年级数学上册:第5章 一元一次方程 单元测试卷 题型:填空题
定义运算“&”:a&b=2a+b,则满足x&(x-6)=0的x的值为________.
2 【解析】试题分析:x& (x-6)=0 2x+(x-6)=0 3x=6 x=2查看答案和解析>>
科目:初中数学 来源:山西省吕梁市孝义市2016-2017学年九年级(上)期末考试数学试卷 题型:解答题
阅读下列材料,完成相应学习任务:
四点共圆的条件
我们知道,过任意一个三角形的三个顶点能作一个圆,过任意一个四边形的四个顶点能作一个圆吗?小明经过实践探究发现:过对角互补的四边形的四个顶点能作一个圆,下面是小明运用反证法证明上述命题的过程:
已知:在四边形ABCD中,∠B+∠D=180°.
求证:过点A、B、C、D可作一个圆.
证明:如图(1),假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆外,设AD与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
如图(2)假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆内,设AD的延长线与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠ADC=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
因此得到四点共圆的条件:过对角互补的四边形的四个顶点能作一个圆.
学习任务:
(1)材料中划线部分结论的依据是 .
(2)证明过程中主要体现了下列哪种数学思想: (填字母代号即可)
A、函数思想 B、方程思想 C、数形结合思想 D、分类讨论思想
(3)如图(3),在四边形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,则求∠ADB的大小.
(1)圆的内接四边形对角互补(2)D;(3)∠ADB=32° 【解析】试题分析:(1)材料中划线部分结论的依据圆的内接四边形对角互补; (2)证明过程中分点D在圆外或圆内两种情形讨论,主要体现了分类讨论的数学思想; (3)利用“对角互补的四边形的四个顶点能作一个圆”这个结论,结合同弧所对的圆周角相等以及等腰三角形的性质,即可解决问题. 试题解析: 【解析】 (1)材...查看答案和解析>>
科目:初中数学 来源:山西省吕梁市孝义市2016-2017学年九年级(上)期末考试数学试卷 题型:填空题
如图所示蓄电池的电压为定值,使用该蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的电器的限制电流不超过12A,那么用电器可变电阻R应控制的范围是_____.
R≥3 【解析】试题分析:设电流I与电阻R的函数关系式为I=, ∵图象经过的点(9,4), ∴k=36, ∴I=, k=36>0,在每一个象限内,I随R的增大而减小, ∴当I取得最大值12时,R取得最小值=3, ∴R≥3, 故答案为:R≥3.查看答案和解析>>
科目:初中数学 来源:山西省吕梁市孝义市2016-2017学年九年级(上)期末考试数学试卷 题型:单选题
已知反比例函数y=,如果在这个函数图象所在的每一个象限内,y的值都随x的增大而增大,那么k的取值可能是( )
A. 0 B. 2 C. 3 D. 4
A 【解析】试题分析:∵反比例函数y=,如果在这个函数图象所在的每一个象限内,y的值都随x的增大而增大, ∴k-1<0, ∴k<1,所以k可能的取值只能是0. 故选A.查看答案和解析>>
科目:初中数学 来源:2017-2018学年黑龙江省大庆市杜尔伯特县九年级(上)期末数学试卷(五四学制) 题型:解答题
如图,已知直线y=﹣2x+12分别与y轴,x轴交于A,B两点,点M在y轴上,以点M为圆心的⊙M与直线AB相切于点D,连接MD.
(1)求证:△ADM∽△AOB;
(2)如果⊙M的半径为2,请写出点M的坐标,并写出以(﹣, )为顶点,且过点M的抛物线的解析式.
(1)见解析;(2)y=﹣2(x+)2+. 【解析】试题分析:(1)由AB为圆M的切线,利用切线的性质得到一对角为直角,再由公共角,利用两对角相等的三角形相似即可得证; (2)设M(0,m),表示出AM,求出DM的长,利用勾股定理求出AB的长,由三角形相似得比例,求出m的值,求出M坐标,设出抛物线顶点形式,把M坐标代入求出即可. 试题解析:(1)证明:∵AB是⊙M切线,D是切点,...查看答案和解析>>
科目:初中数学 来源:2017-2018学年黑龙江省大庆市杜尔伯特县九年级(上)期末数学试卷(五四学制) 题型:单选题
下列说法错误的是( )
A. 直径是圆中最长的弦 B. 长度相等的两条弧是等弧
C. 面积相等的两个圆是等圆 D. 半径相等的两个半圆是等弧
B 【解析】试题解析:A、直径是圆中最长的弦,所以A选项的说法正确; B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误; C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确; D、半径相等的两个半圆是等弧,所以D选项的说法正确. 故选B.查看答案和解析>>
科目:初中数学 来源:山东省德州地区2017-2018学年度第一学期期末检测八年级数学试卷 题型:单选题
如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )
A. AD=AE B. DB=AE C. DF=EF D. DB=EC
B 【解析】试题解析:∵△ABE≌△ACD, ∴AB=AC,AD=AE,∠B=∠C,故A正确; ∴AB-AD=AC-AE,即BD=EC,故D正确; 在△BDF和△CEF中 ∴△BDF≌△CEF(ASA), ∴DF=EF,故C正确; 故选B.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com