【题目】如图,长方形ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,求AG的长.
【答案】1.5
【解析】
试题
先由勾股定理可在Rt△ABD中求出BD=5;再由折叠的性质可知:△ADG≌△A′DG,由此可得:∠BA′G=∠DA′G=∠DAG=90°,A′D=AD=3,A′B=BD-A′D=2;然后设AG=,则A′G=,BG=,最后在Rt△A′BG中,由勾股定理建立方程即可求得AG的长.
试题解析:
∵四边形ABCD是长方形,
∴∠B=90°,
∴在Rt△ABD中,BD=.
∵△A′DG是由△ADG折叠得到的,
∴△ADG≌△A′DG,
∴∠BA′G=∠DA′G=∠DAG=90°,A′D=AD=3,A′G=AG,
∴A′B=BD-A′D=5-3=2,
设AG=,则A′G=,BG=,
在Rt△A′BG中,由勾股定理可得:,
解得:,即AG=1.5.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+4x+5与x轴的两个交点为A、B,与y轴交于点C.
(1)求A,B,C三点的坐标?
(2)求该二次函数的对称轴和顶点坐标?
(3)若坐标平面内的点M,使得以点M和三点A,B,C为顶点的四边形是平行四边形,求点M的坐标?(直接写出M的坐标)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为3cm,圆心角为60°的扇形纸片.AOB在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长 cm(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒 个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
学习了无理数后,小航用这样的方法估算的近似值:
由于,不妨设(),
所以,可得.
由可知,所以,
解得 , 则 .
依照小航的方法解决下列问题:
(1)估算的值.
(2)已知非负整数、、,若,且,则 .(用含、的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1: .
(1)求新坡面的坡角a;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(参考数据:sin22°≈ ,cos22° ,tan22 )
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com