精英家教网 > 初中数学 > 题目详情

【题目】如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接ODOA

1)求∠ODC的度数;

2)若OB=4OC=5,求AO的长.

【答案】160°;(2

【解析】

1)根据旋转的性质得到三角形ODC为等边三角形即可求解;
2)由旋转的性质得:AD=OB=4,结合题意得到∠ADO=90°.则在RtAOD中,由勾股定理即可求得AO的长.

1)由旋转的性质得:CD=CO,∠ACD=BCO

∵∠ACB=ACO+OCB=60°

∴∠DCO=ACO+ACD=ACO+OCB=60°

∴△OCD为等边三角形,

∴∠ODC=60°

2)由旋转的性质得:AD=OB=4

∵△OCD为等边三角形,∴OD=OC=5

∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°

RtAOD中,由勾股定理得:AO=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(21)B(14)C(32)

(1)画出△ABC关于点B成中心对称的图形△A1BC1

(2)以原点O为位似中心,相似比为12,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=kx+2x轴交于点A(m,0)(m4),y轴交于点B,抛物线y2=ax2﹣4ax+c(a0)经过A,B两点.P为线段AB上一点,过点PPQ∥y轴交抛物线于点Q

1)当m=5时,

①求抛物线的关系式;

②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=

2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,河流两岸PQMN互相平行,CD是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB30°,然后沿河岸走了100m到达B处,测得∠CBF70°,求河流的宽度(结果精确到个位,1.73sin70°0.94cos70°0.34tan70°2.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,ECD边上一点,

(1)将ADE绕点A按顺时针方向旋转,使AD、AB重合,得到ABF,如图1所示.观察可知:与DE相等的线段是   AFB=   

(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;

(3)在(2)题中,连接BD分别交AP、AQM、N,你还能用旋转的思想说明BM2+DN2=MN2吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形的边分别在轴,轴上,点的坐标为,点在矩形的内部,点边上,满足,当是等腰三角形时,点坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABADCD,以AB为直径的⊙O经过点C,连接ACOD交于点E

1)求证:ODBC

2)若AC2BC,求证:DA与⊙O相切.

查看答案和解析>>

同步练习册答案