精英家教网 > 初中数学 > 题目详情
抛物线y=-与y轴交于(0,3),
⑴求m的值;
⑵求抛物线与x轴的交点坐标及顶点坐标;
⑶当x取何值时,抛物线在x轴上方?
⑷当x取何值时,y随x的增大而增大?
(1)m=3;(2)(-1,0),(3,0);(1,4);(3)-1<x<3;(4)x>1.

试题分析:(1)直接把点(0,3)代入抛物线解析式求m,确定抛物线解析式,根据解析式确定抛物线的顶点坐标,对称轴,开口方向,与x轴及y轴的交点,画出图象.
(2)、(3)、(4)可以通过(1)的图象及计算得到.
试题解析:(1)由抛物线y=-x2+(m-1)x+m与y轴交于(0,3)得:m=3.
∴抛物线为y=-x2+2x+3=-(x-1)2+4.
列表得:
X
-1
0
1
2
3
y
0
3
4
3
0
图象如图:

(2)由-x2+2x+3=0,得:x1=-1,x2=3.
∴抛物线与x轴的交点为(-1,0),(3,0).
∵y=-x2+2x+3=-(x-1)2+4
∴抛物线顶点坐标为(1,4).
(3)由图象可知:
当-1<x<3时,抛物线在x轴上方.
(4)由图象可知:当x>1时,y的值随x值的增大而减小.
考点: 1.二次函数的图象;2.二次函数的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线轴相交于A、B两点,与轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线的表达式是,那么它的顶点坐标是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象的顶点为M(2,1),且过点N(3,2).

(1)求这个二次函数的关系式;
(2)若一次函数y=-x-4的图象与x轴交于点A,与y轴交于点B,P为抛物线上的一个动点,过点P作PQ∥y轴交直线AB于点Q,以PQ为直径作圆交直线AB于点D.设点P的横坐标为n,问:当n为何值时,线段DQ的长取得最小值?最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一座古拱桥的截面图.在水平面上取点为原点,以水平面为轴建立直角坐标系,桥洞上沿形状恰好是抛物线的图像.桥洞两侧壁上各有一盏距离水面4米高的景观灯.请求出这两盏景观灯间的水平距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园与墙平行的一边长为x(m),花园的面积为y(m2)。
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由:
(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M="0." 下列判断:
①当x>0时,y1>y2
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是.其中正确的是( )
A.①②B.①④C.②③ D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=       .

查看答案和解析>>

同步练习册答案