【题目】一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)求证:△AEF∽△ABC;
(2)求这个正方形零件的边长;
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
【答案】
(1)
解:∵四边形EGFH为矩形,
∴BC∥EF,
∴△AEF∽△ABC;
(2)
解:设正方形零件的边长为amm
在正方形EFGH中,EF∥BC,EG∥AD
∴△AEF∽△ABC,△BFG∽△BAD
∴,,
∴,
即:
解得:a=48
即:正方形零件的边长为48mm;
(3)
设长方形的长为x,宽为y,
当长方形的长在BC时,
由1知:=1,
∵,
∴当,即x=60,y=40,xy最大为2400
当长方形的宽在BC时,,
∵,
∴当,即x=40,y=60,xy最大为2400,
又∵x≥y,所以长方形的宽在BC时,面积<2400
综上,长方形的面积最大为2400mm2.
【解析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.
(2)根据正方形边的平行关系,得出对应的相似三角形,即△AEF∽△ABC,△BFG∽△BAD,从而得出边长之比 , ,得到,进而求出正方形的边长;
(3)分别讨论长方形的长和宽在BC上的情况,再根据相应得关系式得出所求.
【考点精析】解答此题的关键在于理解相似三角形的应用的相关知识,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,C、D是半圆的三等分点,延长AC,BD交于点E.
(1)求∠E的度数;
(2)点M为BE上一点,且满足EMEB=CE2 , 连接CM,求证:CM为⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市居民用电的电价实行阶梯收费,收费标准如下表:
一户居民每月用电量x(单位:度) | 电费价格(单位:元/度) |
0<x≤200 | a |
200<x≤400 | b |
x>400 | 0.92 |
(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.
(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】11月读书节,深圳市为统计某学校初三学生读书状况,如下图:
(1)求三本以上的x值、参加调查的总人数,并补全统计图;
(2)三本以上的圆心角为 ° .
(3)全市有6.7万学生,三本以上有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.
(1)当AB=2时,求△GEC的面积;
(2)求证:AE=EF
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com