精英家教网 > 初中数学 > 题目详情
(2004•海淀区)已知:关于x的一元二次方程ax2+2ax+c=0的两个实数根之差的平方为m.
(1)试分别判断当a=1,c=-3与a=2,c=时,m≥4是否成立,并说明理由;
(2)若对于任意一个非零的实数a,m≥4总成立,求实数c及m的值.
【答案】分析:(1)把a、c的值分别代入ax2+2ax+c=0,①求出方程的根以及两个实数根之差的平方,判断m的值;②根据根与系数的关系求出m的值的取值范围.
(2)先根据一元二次方程的根与系数的关系,表述出两根的和与两根的差,即可用a,c表示出m的值,依据对于任意一个非零的实数a,m≥4总成立,即可确定c和m的值.
解答:解:(1)当a=1,c=-3时,m≥4成立;
当a=2,c=时,m≥4不成立;
当a=1,c=-3时,原方程为x2+2x-3=0,则x1=1,x2=-3,
∴m=[1-(-3)]2=16>4,
即m≥4成立.
当a=2,c=时,原方程为2x2+4x+=0.
由△=42-4×2×>0,可设方程的两个根分别为x1,x2
则x1+x2=-2,x1•x2=
∴m=(x1-x22=(x1+x22-4x1x2=4-2<4,
即m≥4不成立.
(2)依题意,设原方程的两个实数根是x1,x2
则x1+x2=-2,x1•x2=
可得m=(x1-x22=4-
∵对于任意一个非零的实数a都有4-≥4,
∴c=0.
当c=0时,△=4a2>0,
答:c=0,m=4.
点评:此题具有一定的开放性,结合根的判别式与根与系数的关系,考查了同学们利用不等关系推理特殊值的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2004•海淀区)已知:在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,2),以OA为直径作圆B.若点D是x轴上的一动点,连接AD交圆B于点C.
(1)当tan∠DAO=时,求直线BC的解析式;
(2)过点D作DP∥y轴与过B、C两点的直线交于点P,请任意求出三个符合条件的点P的坐标,并确定图象经过这三个点的二次函数的解析式;
(3)若点P满足(2)中的条件,点M的坐标为(-3,3),求线段PM与PB的和的最小值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2004•海淀区)如示意图,在平面直角坐标系中,O为坐标原点,点A是x轴的负半轴上一点,以AO为直径的⊙P经过点C(-8,4).点E(m,n)在⊙P上,且-10<m≤-5,n<0,CE与x轴相交于点M,过C点作直线CN交x轴于点N,交⊙P于点F,使得△CMN是以MN为底的等腰三角形,经过E、F两点的直线与x轴相交于点Q.
(1)求出点A的坐标;
(2)当m=-5时,求图象经过E、Q两点的一次函数的解析式;
(3)当点E(m,n)在⊙P上运动时,猜想∠OQE的大小会发生怎样的变化?请对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源:2004年北京市海淀区中考数学试卷(2)(解析版) 题型:解答题

(2004•海淀区)已知:在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,2),以OA为直径作圆B.若点D是x轴上的一动点,连接AD交圆B于点C.
(1)当tan∠DAO=时,求直线BC的解析式;
(2)过点D作DP∥y轴与过B、C两点的直线交于点P,请任意求出三个符合条件的点P的坐标,并确定图象经过这三个点的二次函数的解析式;
(3)若点P满足(2)中的条件,点M的坐标为(-3,3),求线段PM与PB的和的最小值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年北京市海淀区中考数学试卷(1)(解析版) 题型:解答题

(2004•海淀区)如示意图,在平面直角坐标系中,O为坐标原点,点A是x轴的负半轴上一点,以AO为直径的⊙P经过点C(-8,4).点E(m,n)在⊙P上,且-10<m≤-5,n<0,CE与x轴相交于点M,过C点作直线CN交x轴于点N,交⊙P于点F,使得△CMN是以MN为底的等腰三角形,经过E、F两点的直线与x轴相交于点Q.
(1)求出点A的坐标;
(2)当m=-5时,求图象经过E、Q两点的一次函数的解析式;
(3)当点E(m,n)在⊙P上运动时,猜想∠OQE的大小会发生怎样的变化?请对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《锐角三角函数》(01)(解析版) 题型:选择题

(2004•海淀区)在△ABC中,∠C=90°,若cosB=,则sinA的值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案