精英家教网 > 初中数学 > 题目详情
(2012•江门模拟)如图,已知△ABD和△ACE都是等边三角形,CD、BE相交于点F.
(1)求证:△ABE≌△ADC;
(2)△ABE可由△ADC经过怎样的旋转变换得到?
分析:(1)根据全等三角形的SAS定理,即可证得;因为△ABD和△ACE都是等边三角形,所以有AD=AB,AC=AE,∠DAB=∠EAC=60°,又因为∠DAB+∠BAC=∠EAC+∠BAC,所以∠DAC=∠BAE,故可根据SAS判定△ADC≌△ABE.
(2)由(1)可知,△ABE≌△ADC,只需找出旋转角,即可得出.
解答:(1)证明:∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△ABE和△ADC中
AD=AB
∠DAC=∠BAE
AC=AE

△ABE≌△ADC(SAS)
(2)解:△ABE可由△ADC绕A点逆时针旋转600得到的.
点评:本题主要考查了三角形全等的判定方法,以及图形的旋转,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•江门模拟)如图是一个底面水平放置的圆柱,它的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江门模拟)菱形ABCD的对角线长为分别AC=2
3
,BD=2,则菱形的内角∠BAD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江门模拟)袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江门模拟)据统计,某市2011年有初中毕业生约53600人.试用科学记数法表示53600=
5.36×104
5.36×104

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江门模拟)在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是
18
18

查看答案和解析>>

同步练习册答案