精英家教网 > 初中数学 > 题目详情
(2011•西藏)已知,如图,点A的坐标为(2,0),⊙A交x轴于点B和C,交y轴于点D(0,4),过点D的直线与x轴交于点P,且tan∠APD=
12

(1)求证:PD是⊙A的切线;
(2)判断在直线PD上是否存在点M,使得S△MOD=2S△AOD?若存在,求出点M的坐标;若不存在,请说明理由.
分析:(1)求出OA、OD,求出tan∠ADO=tan∠APD=
1
2
,得出∠ADO=∠APD,推出∠DAO+∠APD=90°,求出∠PDA=90°即可;
(2)求出AD、PD,AP,求出P的坐标,设直线PD的解析式是:y=kx+4,把P的坐标代入求出直线的解析式,设M的坐标是(x,
1
2
x+4),当M在y轴的左边时,过M作MN⊥OD于N,根据S△MOD=2S△AOD,推出
1
2
×4×(-x)=2×
1
2
×2×4,求出x,求出此时M坐标,当M点在y轴的右边时,同法可求M的横坐标是4,代入求出即可.
解答:(1)证明:∵A(2,0)D(0,4),
∴AO=2,OD=4,
∴在Rt△ADO中,tan∠ADO=
OA
OD
=
2
4
=
1
2

∵tan∠APD=
1
2

∴∠ADO=∠APD,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∴∠DAO+∠APD=90°,
∴∠PDA=180°-90°=90°,
∴AD⊥PD,
∵AD是⊙A的半径,
∴PD是⊙A的切线.

(2)解:在△ADO中,OA=2,OD=4,由勾股定理得:AD=2
5

在Rt△PDA中,tan∠APD=
AD
PD
=
1
2

即PD=4
5

由勾股定理得:AP=
(4
5
)
2
+(2
5
)
2
=10,
∵OA=2,
∴OP=8,
即P(-8,0),
∵D(0,4),
∴设直线PD的解析式是:y=kx+4,
把P的坐标代入得:0=-8k+4,
解得:k=
1
2

∴直线PD的解析式是y=
1
2
x+4,
假如存在M点,使得S△MOD=2S△AOD
设M的坐标是(x,
1
2
x+4),
如图:
当M在y轴的左边时,过M作MN⊥OD于N,
∵S△MOD=2S△AOD
1
2
×4×(-x)=2×
1
2
×2×4,
解得:x=-4,
y=
1
2
x+4=2,
即此时M坐标是(-4,2),
当M点在y轴的右边时,同法可求M的横坐标是4,代入y=
1
2
x+4得y=6,
此时M的坐标是(4,6),
即在直线PD上存在点M,使得S△MOD=2S△AOD,点M的坐标是(-4,2)或(4,6).
点评:本题考查了切线的判定,用待定系数法求出一次函数的解析式,一次函数图象上点的坐标特征,勾股定理,三角形的面积等知识点的应用,主要考查学生的推理和计算的能力,题目比较典型,综合性比较强,是一道比较好的题目.注意:要分类讨论啊.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•西藏)如图,在△ABC中,AD⊥BC,垂足为D.
(1)尺规作图:作△ABC的外接圆⊙O,作直径AE,连接CE;(不写作法,保留作图痕迹) 
(2)已知AD=4,AB=5,AC=6,求外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•西藏)为欢迎中外游客来西藏旅游观光,拉萨市旅游局决定对拉贡公路段的噶拉山隧道进行美化施工,已知隧道的横截面为抛物线,其最大高度为7米,底部宽度OE为14米,如图以O点为原点,OE所在直线为X轴建立平面直角坐标系.
(1)写出顶点M的坐标并求出抛物线的解析式;
(2)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使C,D点在抛物线上,A,B点在地面OE上,设长OA为x米,“脚手架”三根木杆AD,DC,CB,的长度之和为l,当x为何值时,l最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•西藏)已知:如图,点A、E、B、D在一条直线上,并且AC=DF,AE=DB,∠A=∠D.
求证:∠C=∠F.

查看答案和解析>>

同步练习册答案