精英家教网 > 初中数学 > 题目详情

如图1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连结PQ。若设运动时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时?PQ//BC?
(2)设△APQ的面积为y(cm2),求y与t之间的函数关系?
(3)是否存在某一时刻t,使线段PQ恰好把△ABC的周长和面积同时平分?若存在求出此时t的值;若不存在,说明理由。
(4)如图2,连结PC,并把△PQC沿AC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在求出此时t的值;若不存在,说明理由。

解析试题分析:(1)当PQ∥BC时,我们可得出三角形APQ和三角形ABC相似,那么可得出关于AP,AB,AQ,AC的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值.
(2)求三角形APQ的面积就要先确定底边和高的值,底边AQ可以根据Q的速度和时间t表示出来.关键是高,可以用AP和∠A的正弦值来求.AP的长可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ边上的高后,就可以得出y与t的函数关系式.
(3)如果将三角形ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC面积的一半,从而判断出是否存在这一时刻.
(4)过点P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示出PN的长,也就表示出了MC的长,要想使四边形PQP'C是菱形,PQ=PC,根据等腰三角形三线合一的特点,QM=MC,这样有用t表示出的AQ,QM,MC三条线段和AC的长,就可以根据AC=AQ+QM+MC来求出t的值.求出了t就可以得出QM,CM和PM的长,也就能求出菱形的边长了.
试题解析:(1) 连接PQ,

时,PQ//BC,即
∴ t=
(2) 过P作PD⊥AC于点D,则有

∴ PD=
∴  y==(0<t<2)
(3) 若平分周长则有:
AP+AQ=(AB+AC+BC),
即:5-t+2t=6,
∴ t=1
当t=1时,y=3.4;而三角形ABC的面积为6,显然不存在。
过P作PD⊥AC于点D,若QD=CD,则PQ=PC,四边形PQP'C就为菱形。

同(2)方法可求AD=,所以:
-2t=4-
解之得:t=
即t=时,四边形PQP'C为菱形。
考点: 相似形综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:计算题

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE//BC,AQ交DE于点P,求证:

(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证:MN=DM·EN

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.
(1)求证:DE与⊙O 相切.
(2)若tanC=,DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.

⑴求证:△ADE≌△BGF;
⑵若正方形DEFG的面积为16,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.

(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有?
②直接写出ΔCDF的外接圆与OA相切时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图,在平行四边形ABCD中,E、F分别是边BC、CD上的点,且EF∥BD,AE、AF分别交BD于点G和点H,BD=12,EF=8。求:(1)的值。(2)线段GH的长。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,上一点,分别交于点,∠1=∠2,探索线段之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,小丽在观察某建筑物

(1)请你根据小亮在阳光下的投影,画出建筑物在阳光下的投影.
(2)已知小丽的身高为,在同一时刻测得小丽和建筑物的投影长分别为,求建筑物的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB

查看答案和解析>>

同步练习册答案