精英家教网 > 初中数学 > 题目详情
15、如图,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,则∠EDF的度数是
70
度.
分析:利用等腰三角形的性质及三角形内角和定理先求出∠B、∠C的度数,再根据等腰三角形求出底角∠BDE和∠CDF的度数,根据平角定义即可求解.
解答:解:∵AB=AC,∠A=40°
∴∠B=∠C=70°
∵EB=BD=DC=CF
∴∠BDE=(180°-70°)÷2=55°,∠CDF=(180°-70°)÷2=55°
∴∠EDF=180°-55°-55°=70°.
故填70.
点评:本题考查了等腰三角形的性质及三角形内角和定理;注意发现三个等腰三角形,根据等腰三角形的两个底角相等以及三角形的内角和定理进行求解是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC中AB的垂直平分线交AC、AB于点P、Q,若PC=2PA,AB=2
2
,∠A=45°,则PC=
 
,BC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O精英家教网交BC于G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=6,cosC=
14
,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC中AB=AC,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,△ABC中AB=AC,∠A=36°,AB的垂直平分线MN交AC于D,下列四个结论正确的是
①②③④
.(填序号)
①△AMD≌△BMD;②AD=BD=BC;③△ABC∽△BDC; ④AD2=CD•AC.

查看答案和解析>>

同步练习册答案