精英家教网 > 初中数学 > 题目详情
已知x=
n+1
-
n
n+1
+
n
,y=
n+1
+
n
n+1
-
n
(n为自然数),问:是否存在自然数n,使代数式19x2+36xy+19y2的值为1 998?若存在,求出n;若不存在,请说明理由.
不存在.
∵x+y=
n+1
-
n
n+1
+
n
+
n+1
+
n
n+1
-
n
=(
n+1
-
n
)2+(
n+1
+
n
)
2
=n+1-2
n(n+1)
+n+n+1+n+2
n(n+1)
=4n+2.
xy=
n+1
-
n
n+1
+
n
n+1
+
n
n+1-
n
=1.
假设存在n使代数式19x2+36xy+19y2的值为1998.
即19x2+36xy+19y2=1998.
19x2+19y2=1962,(x2+y2)=
1 962
19

(x+y)2=
1 962
19
+
38
19
=
2 000
19
.   x+y=
2 000
19
=
20
95
19

由已知条件,得x+y=2(2n+1).
∵n为自然数,∴2(2n+1)为偶数,
∴x+y=
20
95
19
不为整数.
∴不存在这样的自然数n.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x=
n+1
-
n
n+1
+
n
,y=
n+1
+
n
n+1
-
n
,且19x2+123xy+19y2=1985.试求正整数n.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=(  )
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x=
n+1
-
n
n+1
+
n
,y=
n+1
+
n
n+1
-
n
(n为自然数),问:是否存在自然数n,使代数式19x2+36xy+19y2的值为1 998?若存在,求出n;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=
2011
2012
2011
2012

查看答案和解析>>

同步练习册答案