分析 (1)菱形四边相等,根据筝形定义可得菱形是特殊的“筝形”;
(2)①连结BD,根据等边对等角可得∠ABD=∠ADB,∠DBC=∠BDC,进而可得∠ABC=∠ADC;
②连接AC,BD,根据线段垂直平分线的判定可得AC是BD的垂直平分线,根据等腰三角形三线合一的性质可得AC平分∠BAC和∠BCD;
③根据线段垂直平分线的性质可得如果AC是BD的垂直平分线,则AB=AD,BC=CD.
解答 证明:(1)正确,
∵菱形四边相等,
∴菱形是特殊的“筝形”;
(2)①连结BD,在△ABD和△BCD中,
∵AB=AD,BC=CD,
∴∠ABD=∠ADB,∠DBC=∠BDC
∴∠ABC=∠ADC;
②“筝形”有一条对角线平分一组对角(答案不唯一),
连接AC,BD,
∵AB=AD,
∴A在BD的垂直平分线上,
∵BC=DC,
∴C在BD的垂直平分线上,
∴AC是BD的垂直平分线,
∵AB=AD,BC=CD,
∴AC平分∠BAC和∠BCD,
∴“筝形”有一条对角线平分一组对角,
故答案为:“筝形”有一条对角线平分一组对角;
③有一条对角线垂直平分另一条对角线的四边形是筝形(答案不唯一).
故答案为:有一条对角线垂直平分另一条对角线的四边形是筝形.
点评 此题主要考查了四边形的综合,关键是掌握等腰三角形的性质,以及等腰三角形的判定:等边对等角.到线段两端点距离相等的点在线段的垂直平分线上.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com