ÏÈÔĶÁ£¬ÔÙÌî¿Õ£¬ÔÙ½â´ðºóÃæµÄÏà¹ØÎÊÌ⣺
£¨1£©·½³Ìx2-x-2=0µÄ¸ùÊÇx1=2£¬x2=-1£¬Ôòx1+x2=1£¬x1•x2=-2
£¨2£©·½³Ì2x2-3x-5=0µÄ¸ùÊÇx1=-1£¬x2=
5
2
£¬Ôòx1+x2=
3
2
£¬x1x2=-
5
2

£¨3£©·½³Ì3x2-2x-1=0µÄ¸ùÊÇx1=
-
1
3
-
1
3
£¬x2=
1
1
£¬Ôòx1+x2=
2
3
2
3
£¬x1•x2=
-
1
3
-
1
3
£®
¸ù¾Ý¶ÔÒÔÉÏ£¨1£©¡¢£¨2£©¡¢£¨3£©µÄ¹Û²ì¡¢Ë¼¿¼£¬ÄãÄÜ·ñ²Â³ö£ºÈç¹û¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìmx2+nx+p=0£¨m¡Ù0ÇÒm¡¢n¡¢pΪ³£ÊýÇÒn2-4mp¡Ý0£©µÄÁ½¸ùx1¡¢x2£¬ÄÇôx1+x2¡¢x1•x2ÓëϵÊým¡¢n¡¢pÓÐʲô¹Øϵ£¿Çëд³öÄãµÄ²ÂÏ벢˵Ã÷ÀíÓÉ£®
·ÖÎö£ºÏÈÓÉ£¨1£©¡¢£¨2£©¡¢£¨3£©µÃ³ö·½³ÌµÄÁ½¸ùÓëÆäϵÊýµÄ¹Øϵ£¬ÕÒ³ö¹æÂɼ´¿ÉµÃ³ö¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìmx2+nx+p=0£¨m¡Ù0ÇÒm¡¢n¡¢pΪ³£ÊýÇÒn2-4mp¡Ý0£©µÄÁ½¸ùx1¡¢x2£¬ÄÇôx1+x2¡¢x1•x2ÓëϵÊým¡¢n¡¢pµÄ¹Øϵ£®
½â´ð£º½â£º£¨1£©¡ß·½³Ìx2-x-2=0µÄ¶þ´ÎÏîϵÊýÊÇ1¡¢Ò»´ÎÏîϵÊýΪ-1£¬³£ÊýÏîΪ-2£¬
·½³ÌµÄ¸ùÊÇx1=2£¬x2=-1£¬x1+x2=1£¬x1•x2=-2£¬
¡à·½³ÌµÄÁ½¸ùx1+x2=-
-1
1
=1£¬x1•x2=
-2
1
=-2£»
£¨2£©¡ß·½³Ì2x2-3x-5=0µÄ¶þ´ÎÏîϵÊýÊÇ2¡¢Ò»´ÎÏîϵÊýΪ-3£¬³£ÊýÏîΪ-5£¬
·½³ÌµÄ¸ùÊÇx1=-1£¬x2=
5
2
£¬x1+x2=
3
2
£¬x1•x2=-
5
2
£¬
¡à·½³ÌµÄÁ½¸ùx1+x2=-
-3
2
=
3
2
£¬x1•x2=
-5
2
=-
5
2
£»
£¨3£©¡ß³Ì3x2-2x-1=0µÄ¸ùÊÇx1=-
1
3
£¬x2=1£¬
¡ßx1+x2=-
-2
3
=
2
3
£¬x1•x2=
-1
3
=-
1
3
£¬
¡à¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìmx2+nx+p=0£¨m¡Ù0ÇÒm¡¢n¡¢pΪ³£ÊýÇÒn2-4mp¡Ý0£©µÄÁ½¸ùx1¡¢x2£¬
Ôòx1+x2=-
n
m
£¬x1•x2=
p
m
£®
µãÆÀ£º±¾Ì⿼²éµÄÊǸùÓëϵÊýµÄ¹Øϵ£¬ÓÉ£¨1£©¡¢£¨2£©¡¢£¨3£©Öи÷·½³ÌµÄÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ýÓë·½³ÌϵÊýµÄ¹ØϵÕÒ³ö¹æÂÉÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪx1=-2£¬x2=-
4
3
£¬x1+x2=-
10
3
£¬x1x2=
8
3
£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=
-
3
2
-
3
2
£¬x2=
1
1
£¬x1+x2=
-
1
2
-
1
2
£¬x1x2=
-
3
2
-
3
2
£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=
-
b
a
-
b
a
£¬x1x2=
c
a
c
a
£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º044

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½âÌ⣺

(1)·½³Ì£ºx2£­x£­2=0 µÄ¸ùÊÇ£ºx1=£­3, x2=4£¬Ôòx1+x2=1£¬x1¡¤x2=12£»

(2)·½³Ì2x2£­7x+3=0µÄ¸ùÊÇ£ºx1=, x2=3£¬Ôòx1+x2=£¬x1¡¤x2=£»

(3)·½³Ìx2£­3x+1=0µÄ¸ùÊÇ£ºx1=¡¡¡¡ , x2=¡¡¡¡¡¡¡¡.

Ôòx1+x2=¡¡¡¡¡¡¡¡£¬x1¡¤x2=¡¡¡¡¡¡¡¡ £»

¸ù¾ÝÒÔÉÏ£¨1)(2)(3£©ÄãÄÜ·ñ²Â³ö£º

Èç¹û¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìmx2+nx+p=0£¨m¡Ù0ÇÒm¡¢n¡¢pΪ³£Êý£©µÄÁ½¸ùΪx1¡¢x2£¬ÄÇôx1+x2¡¢x1¡¢x2ÓëϵÊým¡¢n¡¢pÓÐʲô¹Øϵ£¿Çëд³öÀ´ÄãµÄ²ÂÏ벢˵Ã÷ÀíÓÉ.

½â£º

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪÊýѧ¹«Ê½£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=______£¬x2=______£¬x1+x2=______£¬x1x2=______£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=______£¬x1x2=______£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁ£¬ÔÙÌî¿Õ
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪx1=-2£¬x2=-
4
3
£¬x1+x2=-
10
3
£¬x1x2=
8
3
£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=______£¬x2=______£¬x1+x2=______£¬x1x2=______£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=______£¬x1x2=______£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012-2013ѧÄ긣½¨Ê¡ÕÄÖÝÊÐƽºÍÏؾÅÄ꼶£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪ£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=______£¬x2=______£¬x1+x2=______£¬x1x2=______£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=______£¬x1x2=______£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸