精英家教网 > 初中数学 > 题目详情
10.已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上的一点,直线AE,CD相交于点P,且∠APD=45°,求证:BD=CE.

分析 (1)利用SAS证明△AFD和△BDC全等即可,利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,就有DF=DC,∠ADF=∠BCD,就可以得出△DCF为等腰直角三角形,就有∠DCF=∠APD=45°,就有CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.

解答 解:(1)∵AF⊥AD,∠ABC=90°,
∴∠FAD=∠DBC,
在△FAD与△DBC中,
$\left\{\begin{array}{l}{AD=BC}\\{∠FAD=∠DBC}\\{AF=BD}\end{array}\right.$,
∴△FAD≌△DBC(SAS);
∴FD=DC,
∴△CDF是等腰三角形,
∵△FAD≌△DBC,
∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,
∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形.
(2)如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,

∴∠FAD=90°.
∵∠ABC=90°,
∴∠FAD=∠DBC=90°.
在△FAD和△DBC中,
$\left\{\begin{array}{l}{AF=BD}\\{∠FAD=∠DBC}\\{AD=BC}\end{array}\right.$,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠APD=45°,
∴∠FCD=∠APD,
∴CF∥AE.
∵∠FAD=90°,∠ABC=90,
∴∠FAD=∠ABC,
∴AF∥BC.
∴四边形AECF是平行四边形,
∴AF=CE,
∴CE=BD.

点评 此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,若直线AB与直线CD交于O,OA平分∠COF,OE⊥CD.
(1)写出图中与∠EOB互余的角;
(2)若∠AOF=25°,求∠BOE和∠DOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,试说明:DF∥BE.
解:∵DF平分∠ADE,(已知)
∴∠EDF=$\frac{1}{2}$∠ADE.(角平分线定义)
∵∠ADE=60°,(已知)
∴∠EDF=30°.(角平分线定义)
∵∠1=30°,(已知)
∴∠1=∠EDF,(等量代换)
∴DF∥BE,(内错角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在?ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.作函数y=|2x-1|+|x+1|的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB上一点,AE⊥CD,BF⊥CD,CH⊥AB.求证:BD=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,点D、E三等分△ABC的BC边,求怔:AB+AC>AD+AE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠C=90°,AC=3cm,BC=4cm,P、Q分别为AB、BC上的动点,点P从点A出发沿AB方向作匀速移动的同时,点Q从点B出发沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P、Q移动的时间为t(0<t≤4).
(1)当PQ⊥AB时,①求证:$\frac{BP}{BC}$=$\frac{BQ}{AB}$;②求t的值;
(2)当t为何值时,PQ=PB;
(3)当t为何值时,△PBQ的面积等于$\frac{9}{5}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,点D是△ABC的边BC的延长线上一点,若∠A=60°,∠ACD=110°,则∠B=50°.

查看答案和解析>>

同步练习册答案