分析 (1)利用SAS证明△AFD和△BDC全等即可,利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,就有DF=DC,∠ADF=∠BCD,就可以得出△DCF为等腰直角三角形,就有∠DCF=∠APD=45°,就有CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.
解答 解:(1)∵AF⊥AD,∠ABC=90°,
∴∠FAD=∠DBC,
在△FAD与△DBC中,
$\left\{\begin{array}{l}{AD=BC}\\{∠FAD=∠DBC}\\{AF=BD}\end{array}\right.$,
∴△FAD≌△DBC(SAS);
∴FD=DC,
∴△CDF是等腰三角形,
∵△FAD≌△DBC,
∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,
∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形.
(2)如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠ABC=90°,
∴∠FAD=∠DBC=90°.
在△FAD和△DBC中,
$\left\{\begin{array}{l}{AF=BD}\\{∠FAD=∠DBC}\\{AD=BC}\end{array}\right.$,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠APD=45°,
∴∠FCD=∠APD,
∴CF∥AE.
∵∠FAD=90°,∠ABC=90,
∴∠FAD=∠ABC,
∴AF∥BC.
∴四边形AECF是平行四边形,
∴AF=CE,
∴CE=BD.
点评 此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com