精英家教网 > 初中数学 > 题目详情
14.如图,在⊙O中,直径AB⊥CD,AB与CD相交于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.
(1)求证:CF是⊙O的切线;
(2)若AE=4,tan∠ACD=$\frac{\sqrt{3}}{3}$,求FC的长.

分析 (1)欲证明CF是⊙O的切线,只要证明OC⊥CF即可.
(2)通过计算发现AE=OE,因为CE⊥OA,可以证明△AOC是等边三角形,由此即可解决问题.

解答 (1)证明:如图,连接OC.
∵AB是直径,
∴∠ACB=90°,
∵OB=OC,
∴∠B=∠OCB,
∴∠OCB+∠ACO=90°,
∵∠FCA=∠B,
∴∠FCA+∠ACO=90°,即∠FCO=90°,
∴FC⊥OC,
∴FC是⊙O切线.
(2)解:∵AB⊥CD,
∴∠AEC=90°,
∵tan∠ACE=$\frac{\sqrt{3}}{3}$=$\frac{AE}{EC}$,AE=4,
∴EC=4$\sqrt{3}$,设OA=OC=r,
在RT△OEC中,r2=(r-4)2+(4$\sqrt{3}$)2
∴r=8,
∴OE=AE=4,∵CE⊥OA,
∴CA=CO=8,
∴△AOC是等边三角形,
∴∠FOC=60°,
在RT△FOC中,∵∠OCF=90°,OC=8,∠F=30°,
∴OF=16,CF=$\sqrt{O{F}^{2}-O{C}^{2}}$=8$\sqrt{3}$.

点评 本题考查切线的判定、三角函数、勾股定理.等边三角形的判定和性质、直角三角形30度角性质,解题的关键是灵活运用直线知识解决问题,证明△AOC是等边三角形是解决问题的突破口,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.(1)计算:(-1)2010+$\sqrt{9}×(\sqrt{5}-π)^{0}+(\frac{1}{5})^{-1}$;
(2)化简:$\frac{4}{{a}^{2}-4}+\frac{2}{a+2}-\frac{1}{a-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:
(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.规定:sin(x+y)=sinx•cosy+cosx•siny.根据初中学过的特殊角的三角函数值,求得sin75°的值为$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
(1)求证:CD是⊙O的切线;
(2)求证:AC•BD=OA•CB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知,如图,△ABC中,AC=BC,∠C=90°,AE平分∠BAC交BC于E,过E做ED⊥AB于D,连接DC交AE于F,其中BD=1.则在下列结论中:①AE⊥DC;②AB=2+$\sqrt{2}$;③$\frac{AE}{CD}$=2;④AE•CD=2+2$\sqrt{2}$.其中正确的结论是①②④.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列命题错误的是(  )
A.平行四边形的对角线互相平分
B.对角线互相垂直平分的四边形是菱形
C.矩形的对角线相等
D.对角线相等的四边形是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在矩形ABCD中,AB=2,BC=4,M是AD的中点,动点E在线段AB上,连结EM并延长交射线CD于点F,过点M作EF的垂线交BC于点G,连结EG、FG.
(1)求证:△AME≌△DMF;
(2)在点E的运动过程中,探究:
①△EGF的形状是否发生变化,若不变,请判断△EGF的形状,并说明理由;
②线段MG的中点H运动的路程最长为多少?(直接写出结果)
(3)设AE=x,△EGF的面积为S,求当S=6时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,矩形ABCD和矩形CEFG中,AD=2,AB=1,CE=3,EF=6,连接AF,H是AF的中点,那么CH的长是(  )
A.$\frac{5}{2}$B.$\sqrt{5}$C.$\frac{5}{2}$$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案