精英家教网 > 初中数学 > 题目详情
在△ABC中,BC=6,CA=8,AB=10,O为三条角平分线的交点,则点O到各边的距离为(  )
A、4B、9C、2D、以上都不对
分析:因为点O是三角形三条角平分线的交点,则点O是△ABC的内心;由勾股定理的逆定理可判断出△ABC是直角三角形,那么两条直角边的和减去斜边的长,即为△ABC内切圆⊙O的直径,进而可求得⊙O的半径,即O到各边的距离.
解答:解:∵在△ABC中,BC=6,CA=8,AB=10,
∴BC2+AC2=AB2,即△ABC是直角三角形,且AB是斜边;
∵O是三条角平分线的交点,
∴点O是Rt△ABC的内心,
∴⊙O的半径r=
BC+AC-AB
2
=2,
即点O到各边的距离为2.
故选C.
点评:此题主要考查了直角三角形的判定、勾股定理的逆定理以及直角三角形内切圆半径的求法等知识,需要注意:直角三角形的内心到各边的距离等于两直角边的和减去斜边的差的二分之一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,BC=5,AC=12,AB=13,在AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,则这样线段的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥BC,CD⊥AD.
(1)在△ABC中,BC边上的高是线段
 

(2)若AB=3cm,CD=2cm,AE=4cm,则S△AEC=
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.
(1)求证:EF∥BC;
(2)若△ABD的面积是6,求四边形BDFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在△ABC中,BC=2AB=4,AD为边BC上的中线,E、F分别为BC、AB上的动点,且CE=BF,EF与AD交于点G.FH⊥AG于H
(1)①如图1,当∠B=90°时,FG
=
=
EG;GH=
2
2

②如图2,当∠B=60°时,FG
=
=
EG;GH=
1
1

③如图3,当∠B=α时,FG
=
=
EG;GH=
1
2
AD
1
2
AD

请你先填上空,再从以上三个命题中任选择一个进行证明
(2)如图4,若(1)中的点E、F分别在BC、AB的延长线上,试问(1)中的结论是否仍然成立.若成立,请证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC点E,AC的长为12cm,则△BCE的周长等于(  )

查看答案和解析>>

同步练习册答案