【题目】求出符合条件的二次函数解析式:
(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);
(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);
(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.
【答案】(1)y=﹣2x2+x+3(2)y=4(x+3)2+6(3)y=﹣3x2+6x+9
【解析】试题分析:(1)设一般式y=ax2+bx+c,再把三个点的坐标代入得到关于a、b、c的方程组,然后解方程组求出a、b、c的值即可;
(2)由于已知顶点坐标,则可设顶点式y=a(x+3)2+6,然后把(-2,10)代入求出a即可;
(3)由于已知抛物线与x轴的两交点坐标,则可设交点式y=a(x+1)(x-3),然后把(0,9)代入求出a即可.
解:(1)设二次函数解析式为y=ax2+bx+c,
根据题意得,解得,
所以二次函数解析式为y=﹣2x2+x+3;
(2)二次函数解析式为y=a(x+3)2+6,
把(﹣2,10)代入得a×(﹣2+3)2+6=10,解得a=4,
所以二次函数解析式为y=4(x+3)2+6;
(3)设二次函数解析式为y=a(x+1)(x﹣3),
把(0,9)代入得a×1×(﹣3)=9,解得a=﹣3,
所以二次函数解析式为y=﹣3(x+1)(x﹣3)=﹣3x2+6x+9.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是边BC上的一点,DE⊥AB,DF⊥AC,垂足分别是E、F,EF∥BC.
(1)求证:△BDE≌△CDF;
(2)若BC=2AD,求证:四边形AEDF是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的顶点坐标分别为 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点 P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称轴P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2016的坐标为( )
A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的内切圆,过点O作DE∥BC,与AB、AC分别交于点D、E.
(1)求证:BD+CE=DE;
(2)若∠BAC=70,求∠BOC的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA为半径的圆弧与BC相切于点D,交AC于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)已知AE=2,DC=,求圆弧的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(m>0)与x轴交于A、B两点.
(1)求证:抛物线的对称轴在y轴的左侧;
(2)若(O为坐标原点),求抛物线的解析式;
(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;
(2)如图2,若点D与圆心O不重合,∠BAC=25°,求∠DCA的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:
A | B | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 400 | 280 |
红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的式子填写下表:
车辆数(辆) | 载客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保证租车费用不超过1900元,求x的最大值;
(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿∠CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com