精英家教网 > 初中数学 > 题目详情

若x2=a,则下列说法错误的是


  1. A.
    x是a的算术平方根
  2. B.
    a是x的平方
  3. C.
    x是a的平方根
  4. D.
    x的平方是a
A
分析:根据平方根及算术平方根的定义对四个选项进行逐一分析即可.
解答:∵x2=a,∴x是a的平方根,
∴A错误,C正确;
∵x2=a,
∴a是x的平方,即x的平方是a,故B、D正确.
故选A.
点评:本题考查的是平方根及算术平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料再回答问题:
对于函数y=x2,当x=1时,y=1,当x=-1时,y=1;当x=2时,y=4,当x=-2时,y=4;…
而点(1,1)与(-1,1),(2,4)与(-2,4),…,都关于y轴对称.显然,如果点(x0,y0)在函数y=x2的图象上,那么,它关于y轴对称的点(-x0,y0)也在函数y=x2的图象上,这时,我们说函数y=x2关于y轴对称.
一般地,如果对于一个函数,当自变量x在允许范围内取值时,若x=x0和x=-x0时,函数值都相等,我们说函数的图象关于y轴对称.
问题:
(1)对于函数y=x3,当自变量x取一对相反数时,函数值也得到一对相反数,则函数y=x3的图象关于
原点
原点
对称.(“x轴”、“y轴”或“原点”).
(2)下列函数:①y=x3+2x;②y=2x4+4x2;③y=x+
1
x
;④y=-x-2 中,其图象关于y轴对称的有
②④
②④
,关于原点对称的有
①③
①③
(只填序号).
(3)请你写出一个我们学过的函数关系式
y=
k
x
(k≠0)
y=
k
x
(k≠0)
,其图象关于直线y=x对称.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面材料,再回答问题.
一般地,如果函数y的自变量x在a<x<b范围内,对于任意x1,x2,当a<x1<x2<b时,总是有y1<y2(yn是与xn对应的函数值),那么就说函数y在a<x<b范围内是增函数.
例如:函数y=x2在正实数范围内是增函数.
证明:在正实数范围内任取x1,x2,若x1<x2
则y1-y2=x12-x22=( x1-x2)( x1+x2
因为x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是当x1<x2时,y1<y2
所以函数y=x2在正实数范围内是增函数.
问题:
(1)下列函数中.①y=-2x(x为全体实数);②y=-
2
x
(x>0);③y=
1
x
(x>0);在给定自变量x的取值范围内,是增函数的有

(2)对于函数y=x2-2x+1,当自变量x
>1
>1
时,函数值y随x的增大而增大.
(3)说明函数y=-x2+4x,当x<2时是增函数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

先阅读下面材料,再回答问题.
一般地,如果函数y的自变量x在a<x<b范围内,对于任意x1,x2,当a<x1<x2<b时,总是有y1<y2(yn是与xn对应的函数值),那么就说函数y在a<x<b范围内是增函数.
例如:函数y=x2在正实数范围内是增函数.
证明:在正实数范围内任取x1,x2,若x1<x2
则y1-y2=x12-x22=( x1-x2)( x1+x2
因为x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是当x1<x2时,y1<y2
所以函数y=x2在正实数范围内是增函数.
问题:
(1)下列函数中.①y=-2x(x为全体实数);②数学公式(x>0);③数学公式(x>0);在给定自变量x的取值范围内,是增函数的有______.
(2)对于函数y=x2-2x+1,当自变量x______时,函数值y随x的增大而增大.
(3)说明函数y=-x2+4x,当x<2时是增函数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料再回答问题:
对于函数y=x2,当x=1时,y=1,当x=-1时,y=1;当x=2时,y=4,当x=-2时,y=4;…
而点(1,1)与(-1,1),(2,4)与(-2,4),…,都关于y轴对称.显然,如果点(x0,y0)在函数y=x2的图象上,那么,它关于y轴对称的点(-x0,y0)也在函数y=x2的图象上,这时,我们说函数y=x2关于y轴对称.
一般地,如果对于一个函数,当自变量x在允许范围内取值时,若x=x0和x=-x0时,函数值都相等,我们说函数的图象关于y轴对称.
问题:
(1)对于函数y=x3,当自变量x取一对相反数时,函数值也得到一对相反数,则函数y=x3的图象关于______对称.(“x轴”、“y轴”或“原点”).
(2)下列函数:①y=x3+2x;②y=2x4+4x2;③数学公式;④y=-x-2 中,其图象关于y轴对称的有______,关于原点对称的有______(只填序号).
(3)请你写出一个我们学过的函数关系式______,其图象关于直线y=x对称.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先阅读下面材料,再回答问题.
一般地,如果函数y的自变量x在a<x<b范围内,对于任意x1,x2,当a<x1<x2<b时,总是有y1<y2(yn是与xn对应的函数值),那么就说函数y在a<x<b范围内是增函数.
例如:函数y=x2在正实数范围内是增函数.
证明:在正实数范围内任取x1,x2,若x1<x2
则y1-y2=x12-x22=( x1-x2)( x1+x2
因为x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是当x1<x2时,y1<y2
所以函数y=x2在正实数范围内是增函数.
问题:
(1)下列函数中.①y=-2x(x为全体实数);②y=-
2
x
(x>0);③y=
1
x
(x>0);在给定自变量x的取值范围内,是增函数的有______.
(2)对于函数y=x2-2x+1,当自变量x______时,函数值y随x的增大而增大.
(3)说明函数y=-x2+4x,当x<2时是增函数.

查看答案和解析>>

同步练习册答案