精英家教网 > 初中数学 > 题目详情
如图,抛物线的顶点坐标是,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

【答案】分析:(1)已知了抛物线的顶点坐标,可用顶点式的二次函数通式设出抛物线的解析式.然后根据A点的坐标即可求出抛物线的解析式.
(2)根据(1)得出的抛物线的解析式即可求出B、C、D的坐标.
(3)如果延长AC交y轴于E点.根据A、C的坐标可求出直线AC的解析式,不难得出E点的坐标,这时可发现E点正好和B点关于x轴对称,也就是说x轴是线段BE的垂直平分线,因此x轴上任意点到B、E两点的距离都相等,那么AE=AC+BC,AP+PC=AP+PE,因此本题要分两种情况进行讨论:
①当P、C重合时,此时AC+BC=AP+PC
②当P、C不重合时,在三角形AEP中,根据三角形三边之间的关系可得出AP+PE>AE,根据前面分析的结论可得出AP+PC>AC+BC.
综合上述两种情况:AP+BP≥AC+BC.
解答:解:(1)设抛物线的解析式为y=a(x-2-
∵抛物线经过A(8,14),
∴14=a(8-2-
解得:a=
∴y=(x-2-(或

(2)令x=0得y=2,
∴B(0,2)
令y=0得x2-x+2=0,
解得x1=1、x2=4
∴C(1,0)、D(4,0)

(3)结论:PA+PB≥AC+BC
理由是:①当点P与点C重合时,有PA+PB=AC+BC
②当点P异于点C时,
∵直线AC经过点A(8,14)、C(1,0),
∴直线AC的解析式为y=2x-2
设直线AC与y轴相交于点E,令x=0,得y=-2,
∴E(0,-2),
则点E(0,-2)与B(0,2)关于x轴对称
∴BC=EC,连接PE,则PE=PB,
∴AC+BC=AC+EC=AE,
∵在△APE中,有PA+PE>AE
∴PA+PB=PA+PE>AE=AC+BC
综上所得AP+BP≥AC+BC.
点评:本题考查了待定系数法求二次函数解析式以及根据二次函数的解析式求函数与坐标轴交点和抛物线顶点的方法,(3)中准确的作出E点(即B关于x轴的对称点)并能根据三角形三边的关系进行求解是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宝山区一模)在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.
艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:
(1)写出抛物线的对称轴;
(2)求出该抛物线的解析式;
(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;
(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.
同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,将一块腰长为数学公式cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为________,点B的坐为________;
(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.
艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:
(1)写出抛物线的对称轴;
(2)求出该抛物线的解析式;
(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;
(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.
同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.

查看答案和解析>>

科目:初中数学 来源:2013年上海市宝山区中考数学一模试卷(解析版) 题型:解答题

在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.
艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:
(1)写出抛物线的对称轴;
(2)求出该抛物线的解析式;
(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;
(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.
同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.

查看答案和解析>>

同步练习册答案