精英家教网 > 初中数学 > 题目详情
精英家教网我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.
如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判断直线y=
1
3
x+
5
6
与正方形OABC是否相交,并说明理由;
(2)设d是点O到直线y=-
3
x+b的距离,若直线y=-
3
x+b与正方形OABC相交,求d的取值范围.
分析:(1)直线AB的解析式是x=1,直线BC的解析式是y=1,求出这两条直线与直线y=
1
3
x+
5
6
的交点,判断交点是否在正方形的边上,就可以判断;
(2)当直线y=-
3
x+b经过点B时,直线与正方形只有一个公共点,可以求出d的值,当直线在B的下方,在经过O点的直线的上方时,直线与正方形相交.
解答:解:(1)相交.
∵直线y=
1
3
x+
5
6
与线段OC交于点(0,
5
6
),同时直线y=
1
3
x+
5
6
与线段CB交于点(
1
2
,1),
∴直线y=
1
3
x+
5
6
与正方形OABC相交;

(2)当直线y=-
3
x+b经过点B时,
即有1=-
3
+b,精英家教网
∴b=
3
+1.
即y=-
3
x+1+
3

记直线y=-
3
x+1+
3
与x、y轴的交点分别为D、E,
则D(
3
+3
3
,0),E(0,1+
3
),
解法1:在Rt△BAD中,tan∠BDA=
BA
AD
=
1
3
3
=
3

∴∠EDO=60°,∠OED=30度,
过O作OF1⊥DE,垂足为F1,则OF1=d1
在Rt△OF1E中,
∵∠OED=30°,
∴d1=
3
+1
2


法2:∴DE=
2
3
(3+
3
),
过O作OF1⊥DE,垂足为F1,则OF1=d1
∴d1=
3
+3
3
×(1+
3
)÷
2
3
(3+
3
)=
3
+1
2

∵直线y=-
3
x+b与直线y=-
3
x+1+
3
平行,

法1:当直线y=-
3
x+b与正方形OABC相交时,一定与线段OB相交,且交点不与点O、B重合.
故直线y=-
3
x+b也一定与线段OF1相交,记交点为F,则F不与点O、F1重合,且OF=d,
∴当直线y=-
3
x+b与正方形相交时,
有0<d<
3
+1
2


法2:当直线y=-
3
x+b与直线y=x(x>0)相交时,
有x=-
3
x+b,即x=
b
3
+1

当0<b<1+
3
时,0<x<1,0<y<1,
此时直线y=-
3
x+b与线段OB相交,且交点不与点O、B重合;
当b>1+
3
时,x>1,
此时直线y=-
3
x+b与线段OB不相交.
而当b≤0时,直线y=-
3
x+b不经过第一象限,即与正方形OABC不相交.
∴当0<b<1+
3
时,d随b的增大而增大,则直线y=-
3
x+b与正方形OABC相交,
此时有0<d<
3
+1
2
点评:本题主要考查了待定系数法求函数解析式,正确确定直线与正方形相交的位置是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2013年3月中考数学模拟试卷(21)(解析版) 题型:解答题

我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.
如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判断直线y=x+与正方形OABC是否相交,并说明理由;
(2)设d是点O到直线y=-x+b的距离,若直线y=-x+b与正方形OABC相交,求d的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省扬州中学树人学校中考数学一模试卷(解析版) 题型:解答题

(2009•厦门)我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.
如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判断直线y=x+与正方形OABC是否相交,并说明理由;
(2)设d是点O到直线y=-x+b的距离,若直线y=-x+b与正方形OABC相交,求d的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2009•厦门)我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.
如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判断直线y=x+与正方形OABC是否相交,并说明理由;
(2)设d是点O到直线y=-x+b的距离,若直线y=-x+b与正方形OABC相交,求d的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年福建省厦门市中考数学试卷(解析版) 题型:解答题

(2009•厦门)我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.
如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判断直线y=x+与正方形OABC是否相交,并说明理由;
(2)设d是点O到直线y=-x+b的距离,若直线y=-x+b与正方形OABC相交,求d的取值范围.

查看答案和解析>>

同步练习册答案