精英家教网 > 初中数学 > 题目详情

如图,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan, 即ctan=,根据上述角的余切定义,解下列问题:

(1)ctan30=       

(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.

 


解:(1)  ……………………. 5分

(2),

……………. . 10分

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
b
sinB
=
c
sinC

这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,精英家教网过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
AD
AB
,则AD=csinB
Rt△ACD中,sinC=
AD
AC
,则AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种(  )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:

  定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.

  结论:在探讨过程中,有三位同学得出如下结果:

       甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、____个、_____个大小不同的内接正方形.

       乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.

       丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.

任务:(1)填充甲同学结论中的数据;

       (2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;

       (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明。

(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用“”这个结论,但在证明正确的情况下扣1分).

 

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、________个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明
(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用“”这个结论,但在证明正确的情况下扣1分).

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(江西卷)数学 题型:解答题

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、________个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明
(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用”这个结论,但在证明正确的情况下扣1分).

查看答案和解析>>

科目:初中数学 来源:2011年江苏省江阴市九年级上学期期中考试数学卷 题型:解答题

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:

  定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.

  结论:在探讨过程中,有三位同学得出如下结果:

        甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、____个、_____个大小不同的内接正方形.

        乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.

        丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.

任务:(1)填充甲同学结论中的数据;

       (2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;

       (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明。

(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用“”这个结论,但在证明正确的情况下扣1分).

 

查看答案和解析>>

同步练习册答案